Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bar-Code For Explosives

05.04.2005


Barely visible dust layer in the place of explosion would tell specialists where and when the explosive was produced. To this end, the dust should be preliminarily marked up in the way suggested by Russian researchers. The project was sponsored by the International Science and Technology Center.



When investigating the locus delicti after the explosion the experts face a significant problem. They can determine with high probability the kind and capacity of explosive device used by terrorists and the explosive it was filled with. However, the most important question – where and when the explosive was produced – usually remains unanswered: trotyl is trotyl regardless of the place and date of its production.

Specialists of the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, and their colleagues from several defense enterprises have developed special coding additives. If they are introduced in the explosive composition, then peculiar “finger-prints” will remain in the place of explosion, judging by which specialist can identify the explosive and track routes of its legal migration, thus providing investigation with a clue for disclosing terrorists’ supply channels. This important researchers’ effort has been sponsored by the International Science and Technology Center.


It should be noted that it is very difficult to produce such coding additives particularly for explosive – too many requirements are set forward. On the one hand, the additives themselves should be absolutely harmless both for the product (i.e., explosive) and for the environment. In no circumstances radio-active coding additives or such additives that could worsen explosive characteristics should be used.

On the other hand, the explosion, i.e. high temperature and pressure, should not damage coding additives. It doesn’t matter even if the additives get somehow transformed in these extreme conditions. The most important thing is that they do not lose their coding properties. And certainly they should be very specific to make identification reliable. No admixtures should prevent from recognizing markers or should mix them up.

However, these challenges did not impede the researchers from the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, specialists of the highest category in the area of physicochemistry of explosives, spectrography and applied mathematics, to solve the problem. The coding additives they have suggested to introduce in the explosive composition would not spoil it, and upon the explosion they would not deteriorate themselves or damage the environment.

“These are the finest grains of aluminum alloy, says the project manager, head of the laboratory Yuri Karasevich. But this is not an ordinary aluminum alloy, but a peculiar one. It contains substances called rare earths or rare earth elements. It is because they are very scarce in nature and they are dispersed along the earth’s crust. So, they cannot be found in any meaningful quantities in special predetermined combinations either in natural or handmade objects. However, they can be found in the place of explosion if they have been preliminarily into the explosive composition.”

Evidently, it is more complicated to identify such "fingerprints" than to read information from bar-codes in a supermarket. Identification actually requires carrying out complicated chemical analysis of microsamples. Specialists should determine the quantity of rare earth elements contained in the sample, what particular rare earth elements are contained in it and in what combination. Nevertheless, the researchers have managed to cope with this challenge.

For analytical procedure, the authors have suggested to use the laser emission method of analysis of elemental composition with the help of equipment developed by the ‘Typhoon’ research-and-production association. In case of such research, the sample is first converted into plasma at the temperature of 50 to 60 thousand degrees C, and then electric discharge is let pass through plasma. Judging by the radiation spectrum, specialists determine the particular elements contained in plasma. The researchers have also developed the necessary technique and complicated software for statistical spectrum analysis.

First trials have already been carried out by the researchers. They have studied properties of the “coded” explosive on a special test bench in the blasting chamber and made sure that it blows up in a proper way – no worse that the parent explosive does. The researchers have also come to the conclusion that it leaves correct “finger-prints” that allow to identify the explosive as reliably as the goods are identified by the bar-code. So, the researchers have solved their task. It is up to the politicians now. A respective international convention is needed to have all explosives marked up in this way. Hopefully, the convention will be in place some day.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>