Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bar-Code For Explosives

05.04.2005


Barely visible dust layer in the place of explosion would tell specialists where and when the explosive was produced. To this end, the dust should be preliminarily marked up in the way suggested by Russian researchers. The project was sponsored by the International Science and Technology Center.



When investigating the locus delicti after the explosion the experts face a significant problem. They can determine with high probability the kind and capacity of explosive device used by terrorists and the explosive it was filled with. However, the most important question – where and when the explosive was produced – usually remains unanswered: trotyl is trotyl regardless of the place and date of its production.

Specialists of the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, and their colleagues from several defense enterprises have developed special coding additives. If they are introduced in the explosive composition, then peculiar “finger-prints” will remain in the place of explosion, judging by which specialist can identify the explosive and track routes of its legal migration, thus providing investigation with a clue for disclosing terrorists’ supply channels. This important researchers’ effort has been sponsored by the International Science and Technology Center.


It should be noted that it is very difficult to produce such coding additives particularly for explosive – too many requirements are set forward. On the one hand, the additives themselves should be absolutely harmless both for the product (i.e., explosive) and for the environment. In no circumstances radio-active coding additives or such additives that could worsen explosive characteristics should be used.

On the other hand, the explosion, i.e. high temperature and pressure, should not damage coding additives. It doesn’t matter even if the additives get somehow transformed in these extreme conditions. The most important thing is that they do not lose their coding properties. And certainly they should be very specific to make identification reliable. No admixtures should prevent from recognizing markers or should mix them up.

However, these challenges did not impede the researchers from the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, specialists of the highest category in the area of physicochemistry of explosives, spectrography and applied mathematics, to solve the problem. The coding additives they have suggested to introduce in the explosive composition would not spoil it, and upon the explosion they would not deteriorate themselves or damage the environment.

“These are the finest grains of aluminum alloy, says the project manager, head of the laboratory Yuri Karasevich. But this is not an ordinary aluminum alloy, but a peculiar one. It contains substances called rare earths or rare earth elements. It is because they are very scarce in nature and they are dispersed along the earth’s crust. So, they cannot be found in any meaningful quantities in special predetermined combinations either in natural or handmade objects. However, they can be found in the place of explosion if they have been preliminarily into the explosive composition.”

Evidently, it is more complicated to identify such "fingerprints" than to read information from bar-codes in a supermarket. Identification actually requires carrying out complicated chemical analysis of microsamples. Specialists should determine the quantity of rare earth elements contained in the sample, what particular rare earth elements are contained in it and in what combination. Nevertheless, the researchers have managed to cope with this challenge.

For analytical procedure, the authors have suggested to use the laser emission method of analysis of elemental composition with the help of equipment developed by the ‘Typhoon’ research-and-production association. In case of such research, the sample is first converted into plasma at the temperature of 50 to 60 thousand degrees C, and then electric discharge is let pass through plasma. Judging by the radiation spectrum, specialists determine the particular elements contained in plasma. The researchers have also developed the necessary technique and complicated software for statistical spectrum analysis.

First trials have already been carried out by the researchers. They have studied properties of the “coded” explosive on a special test bench in the blasting chamber and made sure that it blows up in a proper way – no worse that the parent explosive does. The researchers have also come to the conclusion that it leaves correct “finger-prints” that allow to identify the explosive as reliably as the goods are identified by the bar-code. So, the researchers have solved their task. It is up to the politicians now. A respective international convention is needed to have all explosives marked up in this way. Hopefully, the convention will be in place some day.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>