Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bar-Code For Explosives


Barely visible dust layer in the place of explosion would tell specialists where and when the explosive was produced. To this end, the dust should be preliminarily marked up in the way suggested by Russian researchers. The project was sponsored by the International Science and Technology Center.

When investigating the locus delicti after the explosion the experts face a significant problem. They can determine with high probability the kind and capacity of explosive device used by terrorists and the explosive it was filled with. However, the most important question – where and when the explosive was produced – usually remains unanswered: trotyl is trotyl regardless of the place and date of its production.

Specialists of the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, and their colleagues from several defense enterprises have developed special coding additives. If they are introduced in the explosive composition, then peculiar “finger-prints” will remain in the place of explosion, judging by which specialist can identify the explosive and track routes of its legal migration, thus providing investigation with a clue for disclosing terrorists’ supply channels. This important researchers’ effort has been sponsored by the International Science and Technology Center.

It should be noted that it is very difficult to produce such coding additives particularly for explosive – too many requirements are set forward. On the one hand, the additives themselves should be absolutely harmless both for the product (i.e., explosive) and for the environment. In no circumstances radio-active coding additives or such additives that could worsen explosive characteristics should be used.

On the other hand, the explosion, i.e. high temperature and pressure, should not damage coding additives. It doesn’t matter even if the additives get somehow transformed in these extreme conditions. The most important thing is that they do not lose their coding properties. And certainly they should be very specific to make identification reliable. No admixtures should prevent from recognizing markers or should mix them up.

However, these challenges did not impede the researchers from the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, specialists of the highest category in the area of physicochemistry of explosives, spectrography and applied mathematics, to solve the problem. The coding additives they have suggested to introduce in the explosive composition would not spoil it, and upon the explosion they would not deteriorate themselves or damage the environment.

“These are the finest grains of aluminum alloy, says the project manager, head of the laboratory Yuri Karasevich. But this is not an ordinary aluminum alloy, but a peculiar one. It contains substances called rare earths or rare earth elements. It is because they are very scarce in nature and they are dispersed along the earth’s crust. So, they cannot be found in any meaningful quantities in special predetermined combinations either in natural or handmade objects. However, they can be found in the place of explosion if they have been preliminarily into the explosive composition.”

Evidently, it is more complicated to identify such "fingerprints" than to read information from bar-codes in a supermarket. Identification actually requires carrying out complicated chemical analysis of microsamples. Specialists should determine the quantity of rare earth elements contained in the sample, what particular rare earth elements are contained in it and in what combination. Nevertheless, the researchers have managed to cope with this challenge.

For analytical procedure, the authors have suggested to use the laser emission method of analysis of elemental composition with the help of equipment developed by the ‘Typhoon’ research-and-production association. In case of such research, the sample is first converted into plasma at the temperature of 50 to 60 thousand degrees C, and then electric discharge is let pass through plasma. Judging by the radiation spectrum, specialists determine the particular elements contained in plasma. The researchers have also developed the necessary technique and complicated software for statistical spectrum analysis.

First trials have already been carried out by the researchers. They have studied properties of the “coded” explosive on a special test bench in the blasting chamber and made sure that it blows up in a proper way – no worse that the parent explosive does. The researchers have also come to the conclusion that it leaves correct “finger-prints” that allow to identify the explosive as reliably as the goods are identified by the bar-code. So, the researchers have solved their task. It is up to the politicians now. A respective international convention is needed to have all explosives marked up in this way. Hopefully, the convention will be in place some day.

Sergey Komarov | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>