Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bar-Code For Explosives

05.04.2005


Barely visible dust layer in the place of explosion would tell specialists where and when the explosive was produced. To this end, the dust should be preliminarily marked up in the way suggested by Russian researchers. The project was sponsored by the International Science and Technology Center.



When investigating the locus delicti after the explosion the experts face a significant problem. They can determine with high probability the kind and capacity of explosive device used by terrorists and the explosive it was filled with. However, the most important question – where and when the explosive was produced – usually remains unanswered: trotyl is trotyl regardless of the place and date of its production.

Specialists of the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, and their colleagues from several defense enterprises have developed special coding additives. If they are introduced in the explosive composition, then peculiar “finger-prints” will remain in the place of explosion, judging by which specialist can identify the explosive and track routes of its legal migration, thus providing investigation with a clue for disclosing terrorists’ supply channels. This important researchers’ effort has been sponsored by the International Science and Technology Center.


It should be noted that it is very difficult to produce such coding additives particularly for explosive – too many requirements are set forward. On the one hand, the additives themselves should be absolutely harmless both for the product (i.e., explosive) and for the environment. In no circumstances radio-active coding additives or such additives that could worsen explosive characteristics should be used.

On the other hand, the explosion, i.e. high temperature and pressure, should not damage coding additives. It doesn’t matter even if the additives get somehow transformed in these extreme conditions. The most important thing is that they do not lose their coding properties. And certainly they should be very specific to make identification reliable. No admixtures should prevent from recognizing markers or should mix them up.

However, these challenges did not impede the researchers from the Semenov Intitute of Chemical Physics, Russian Academy of Sciences, specialists of the highest category in the area of physicochemistry of explosives, spectrography and applied mathematics, to solve the problem. The coding additives they have suggested to introduce in the explosive composition would not spoil it, and upon the explosion they would not deteriorate themselves or damage the environment.

“These are the finest grains of aluminum alloy, says the project manager, head of the laboratory Yuri Karasevich. But this is not an ordinary aluminum alloy, but a peculiar one. It contains substances called rare earths or rare earth elements. It is because they are very scarce in nature and they are dispersed along the earth’s crust. So, they cannot be found in any meaningful quantities in special predetermined combinations either in natural or handmade objects. However, they can be found in the place of explosion if they have been preliminarily into the explosive composition.”

Evidently, it is more complicated to identify such "fingerprints" than to read information from bar-codes in a supermarket. Identification actually requires carrying out complicated chemical analysis of microsamples. Specialists should determine the quantity of rare earth elements contained in the sample, what particular rare earth elements are contained in it and in what combination. Nevertheless, the researchers have managed to cope with this challenge.

For analytical procedure, the authors have suggested to use the laser emission method of analysis of elemental composition with the help of equipment developed by the ‘Typhoon’ research-and-production association. In case of such research, the sample is first converted into plasma at the temperature of 50 to 60 thousand degrees C, and then electric discharge is let pass through plasma. Judging by the radiation spectrum, specialists determine the particular elements contained in plasma. The researchers have also developed the necessary technique and complicated software for statistical spectrum analysis.

First trials have already been carried out by the researchers. They have studied properties of the “coded” explosive on a special test bench in the blasting chamber and made sure that it blows up in a proper way – no worse that the parent explosive does. The researchers have also come to the conclusion that it leaves correct “finger-prints” that allow to identify the explosive as reliably as the goods are identified by the bar-code. So, the researchers have solved their task. It is up to the politicians now. A respective international convention is needed to have all explosives marked up in this way. Hopefully, the convention will be in place some day.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>