Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Information Fusion Research Simulates Disasters to Manage Emergency Response


Improving how decision-makers respond in the minutes and hours that follow the first reports of a natural disaster like the recent tsunami or a manmade incident, such as a chemical accident or a terrorist attack, is the focus of a research project at the University at Buffalo’s Center for Multisource Information Fusion.

"Responders immediately begin knitting together a picture that makes sense of what is happening based on the flow of reports they receive from the field," said Peter Scott, Ph.D., associate professor of computer science and engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project. "Our goal is to take the typically chaotic flow of reports of variable quality and heterogeneous origin received from the field in the period immediately after the disaster and transform it into useful information for decision-makers and emergency responders to act upon," he said. The system is undergoing beta testing, Scott said, and should be completed and available for use within one year.

The project, funded with a $2.5 million grant from the Air Force Office of Scientific Research, consists of theoretical research on information fusion coupled with design of a large-scale simulation of a disaster modeled after the 1994 Northridge earthquake in California. The goal is to produce response-system design guidelines, applicable to both natural disasters, such as earthquakes, tsunamis and wildfires, and to manmade incidents, such as chemical accidents and terrorist attacks, and test them in the simulated-disaster environment.

The software Scott and his colleagues are developing is driven by data collected by the Federal Emergency Management Administration during the Northridge earthquake and similar earthquakes regarding characteristics of that disaster, such as building and roadway damage, and how they correlated to casualties. "Using our software, we create realistic simulations of earthquakes in the San Fernando Valley of differing characteristics, such as the depth of the quake, the location of the epicenter and its proximity to population centers," explained Scott. "Based on those parameters, the simulation determines the number of casualties created as an immediate consequence of the primary shake and their geographical distribution."

The computer program also simulates and "fuses" reports typically received from observers such as policemen and civilians, who may be providing redundant or contradictory information. "Our simulation takes these reports and assigns probabilities of error and uncertainty to the information they contain based on known reliability data and then fuses the information into a unified, coherent ’situation assessment’ to help emergency responders and decision-makers make the best, most timely decisions that they can," Scott said.

One of the critical goals of the project and one that is a chief concern for the Air Force, he added, is discovery, in the midst of a primary incident, of an unpredicted and unexpected secondary event that can occur as a result of the initial disaster. "Psychological testing shows that a responder can too quickly lock into the idea, ’OK, I’m responding to trauma casualties caused by an earthquake,’ and it’s difficult for them to then consider other issues," he said.

In the recent tsunami, he said, those secondary incidents might include ruptured gas mains, environmental contamination or widespread cholera. After an earthquake, the collapse of a highway bridge might cause a tanker truck full of chlorine to fall and rupture, spreading a toxic plume and causing a spike in respiratory casualties.

According to Scott, the information fusion process begins linking reports and considering secondary causes, as soon as the first two reports of casualties or damage are received. "Our program is designed to suggest likely scenarios and to provide confidence measures associated with each of those scenarios," he said.

The software will provide those scenarios and measurements within minutes or seconds after the first reports are received. "If the situation assessment is not keeping pace with the unfolding needs of the emergency responders and decision makers, then it’s not useful," he said.

Scott’s co-investigators on the project from the UB Department of Industrial Engineering include Rajan Batta; Ph.D., Li Lin, Ph.D.; and James Llinas, Ph.D., all professors, and Ann Bisantz, Ph.D., associate professor. Thenkurussi Kesavadas, Ph.D., associate professor in the UB Department of Mechanical and Aerospace Engineering, also is a co-investigator. Eight graduate students also work on the project.

Jim Scandale of the CMIF Lab is software manager and the group is supported by collaborators from the Systems Engineering Department of the University of Virginia at Charlottesville and the Department of Computer Science of the University of Arkansas at Little Rock.

Ellen Goldbaum | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>