Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information Fusion Research Simulates Disasters to Manage Emergency Response

13.01.2005


Improving how decision-makers respond in the minutes and hours that follow the first reports of a natural disaster like the recent tsunami or a manmade incident, such as a chemical accident or a terrorist attack, is the focus of a research project at the University at Buffalo’s Center for Multisource Information Fusion.

"Responders immediately begin knitting together a picture that makes sense of what is happening based on the flow of reports they receive from the field," said Peter Scott, Ph.D., associate professor of computer science and engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project. "Our goal is to take the typically chaotic flow of reports of variable quality and heterogeneous origin received from the field in the period immediately after the disaster and transform it into useful information for decision-makers and emergency responders to act upon," he said. The system is undergoing beta testing, Scott said, and should be completed and available for use within one year.

The project, funded with a $2.5 million grant from the Air Force Office of Scientific Research, consists of theoretical research on information fusion coupled with design of a large-scale simulation of a disaster modeled after the 1994 Northridge earthquake in California. The goal is to produce response-system design guidelines, applicable to both natural disasters, such as earthquakes, tsunamis and wildfires, and to manmade incidents, such as chemical accidents and terrorist attacks, and test them in the simulated-disaster environment.



The software Scott and his colleagues are developing is driven by data collected by the Federal Emergency Management Administration during the Northridge earthquake and similar earthquakes regarding characteristics of that disaster, such as building and roadway damage, and how they correlated to casualties. "Using our software, we create realistic simulations of earthquakes in the San Fernando Valley of differing characteristics, such as the depth of the quake, the location of the epicenter and its proximity to population centers," explained Scott. "Based on those parameters, the simulation determines the number of casualties created as an immediate consequence of the primary shake and their geographical distribution."

The computer program also simulates and "fuses" reports typically received from observers such as policemen and civilians, who may be providing redundant or contradictory information. "Our simulation takes these reports and assigns probabilities of error and uncertainty to the information they contain based on known reliability data and then fuses the information into a unified, coherent ’situation assessment’ to help emergency responders and decision-makers make the best, most timely decisions that they can," Scott said.

One of the critical goals of the project and one that is a chief concern for the Air Force, he added, is discovery, in the midst of a primary incident, of an unpredicted and unexpected secondary event that can occur as a result of the initial disaster. "Psychological testing shows that a responder can too quickly lock into the idea, ’OK, I’m responding to trauma casualties caused by an earthquake,’ and it’s difficult for them to then consider other issues," he said.

In the recent tsunami, he said, those secondary incidents might include ruptured gas mains, environmental contamination or widespread cholera. After an earthquake, the collapse of a highway bridge might cause a tanker truck full of chlorine to fall and rupture, spreading a toxic plume and causing a spike in respiratory casualties.

According to Scott, the information fusion process begins linking reports and considering secondary causes, as soon as the first two reports of casualties or damage are received. "Our program is designed to suggest likely scenarios and to provide confidence measures associated with each of those scenarios," he said.

The software will provide those scenarios and measurements within minutes or seconds after the first reports are received. "If the situation assessment is not keeping pace with the unfolding needs of the emergency responders and decision makers, then it’s not useful," he said.

Scott’s co-investigators on the project from the UB Department of Industrial Engineering include Rajan Batta; Ph.D., Li Lin, Ph.D.; and James Llinas, Ph.D., all professors, and Ann Bisantz, Ph.D., associate professor. Thenkurussi Kesavadas, Ph.D., associate professor in the UB Department of Mechanical and Aerospace Engineering, also is a co-investigator. Eight graduate students also work on the project.

Jim Scandale of the CMIF Lab is software manager and the group is supported by collaborators from the Systems Engineering Department of the University of Virginia at Charlottesville and the Department of Computer Science of the University of Arkansas at Little Rock.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>