Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IBM Research is developing an enterprise-class anti-spam filter


Spam is a massive problem - it currently accounts for between 1/3 and 1/2 of all emails and costs companies billions of dollars as the result of lower productivity, loss of legitimate messages and the need for increased bandwidth and storage. In a bid to try solve the problem, IBM has brought together scientists from different areas of research division to develop an enterprise anti-spam filtering system which combines several different filtering technologies to create the ultimate anti-spam system. For example one of the spam filters - Chung-Kwei - is a pattern-discovery-based system which uses an algorithm developed by life sciences researchers focused tackling computational biology challenges such as gene finding and protein annotation. By itself, Chung-Kwei detected 96.56 percent of spam messages with just a .066 percent false positive rate during tests conducted in IBM’s labs. By combining Chung-Kwei with the other spam filtering techniques, IBM researchers have created SpamGuru - a prototype anti-spam system which they believe has the potential to eliminate virtually all spam.

SpamGuru: An Enterprise Anti-Spam Filtering System

IBM Research is developing an enterprise-class anti-spam filter as part of our overall strategy of attacking the Spam problem on multiple fronts. Our anti-spam filter, SpamGuru, mirrors this philosophy by incorporating several different filtering technologies and intelligently combining their output to produce a single spamminess rating or score for each incoming message. The use of multiple algorithms improves the system’s effectiveness and makes it more difficult for spammers to attack. While a spammer may defeat any single algorithm, SpamGuru can rely on its remaining algorithms to maintain a high-degree of effectiveness.

SpamGuru’s filtering architecture uses multiple classification algorithms which are integrated into a single classification pipeline. SpamGuru’s pipeline allows it to benefit from multiple classifiers with minimum extra computational cost. SpamGuru’s classification technologies include spoof detection, Bayesian filtering, plagiarism detection, automatically generated white- and black-lists, and Chung-Kwei, a novel technique that uses advanced pattern-matching algorithms developed by IBM’s bioinformatics group.

Chung-Kwei: a Pattern-discovery-based System for the Automatic Identification of Unsolicited E-mail Messages (SPAM)

Chung-Kwei is a system that we developed recently for the analysis of electronic mail and the automatic identification and tagging of unsolicited messages (=spam). The underlying method uses pattern-discovery and has its underpinnings in a generic approach that has been behind successful solutions we developed for tackling computational biology problems such as gene finding and protein annotation. Chung-Kwei can be trained very quickly using a body of known spam/white messages and can do so without interrupting the ongoing classification of incoming e-mail. The prototype system, that we developed by training on a repository of 87,000 spam and white messages, achieved a sensitivity of 96.56% with a false positive rate of 0.066%, or one-in-six-thousand messages. In terms of speed, the Chung-Kwei prototype is capable of classifying approximately 200 messages per second, on a 2.2 GHz Intel-Pentium platform.

Christine Paulus | IBM
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>