Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBM Research is developing an enterprise-class anti-spam filter

25.08.2004


Spam is a massive problem - it currently accounts for between 1/3 and 1/2 of all emails and costs companies billions of dollars as the result of lower productivity, loss of legitimate messages and the need for increased bandwidth and storage. In a bid to try solve the problem, IBM has brought together scientists from different areas of research division to develop an enterprise anti-spam filtering system which combines several different filtering technologies to create the ultimate anti-spam system. For example one of the spam filters - Chung-Kwei - is a pattern-discovery-based system which uses an algorithm developed by life sciences researchers focused tackling computational biology challenges such as gene finding and protein annotation. By itself, Chung-Kwei detected 96.56 percent of spam messages with just a .066 percent false positive rate during tests conducted in IBM’s labs. By combining Chung-Kwei with the other spam filtering techniques, IBM researchers have created SpamGuru - a prototype anti-spam system which they believe has the potential to eliminate virtually all spam.

SpamGuru: An Enterprise Anti-Spam Filtering System

IBM Research is developing an enterprise-class anti-spam filter as part of our overall strategy of attacking the Spam problem on multiple fronts. Our anti-spam filter, SpamGuru, mirrors this philosophy by incorporating several different filtering technologies and intelligently combining their output to produce a single spamminess rating or score for each incoming message. The use of multiple algorithms improves the system’s effectiveness and makes it more difficult for spammers to attack. While a spammer may defeat any single algorithm, SpamGuru can rely on its remaining algorithms to maintain a high-degree of effectiveness.



SpamGuru’s filtering architecture uses multiple classification algorithms which are integrated into a single classification pipeline. SpamGuru’s pipeline allows it to benefit from multiple classifiers with minimum extra computational cost. SpamGuru’s classification technologies include spoof detection, Bayesian filtering, plagiarism detection, automatically generated white- and black-lists, and Chung-Kwei, a novel technique that uses advanced pattern-matching algorithms developed by IBM’s bioinformatics group.

Chung-Kwei: a Pattern-discovery-based System for the Automatic Identification of Unsolicited E-mail Messages (SPAM)

Chung-Kwei is a system that we developed recently for the analysis of electronic mail and the automatic identification and tagging of unsolicited messages (=spam). The underlying method uses pattern-discovery and has its underpinnings in a generic approach that has been behind successful solutions we developed for tackling computational biology problems such as gene finding and protein annotation. Chung-Kwei can be trained very quickly using a body of known spam/white messages and can do so without interrupting the ongoing classification of incoming e-mail. The prototype system, that we developed by training on a repository of 87,000 spam and white messages, achieved a sensitivity of 96.56% with a false positive rate of 0.066%, or one-in-six-thousand messages. In terms of speed, the Chung-Kwei prototype is capable of classifying approximately 200 messages per second, on a 2.2 GHz Intel-Pentium platform.

Christine Paulus | IBM
Further information:
http://www.ibm.com

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>