Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor "Memory" System: Faster, More Precise Damage Assessment

16.08.2004


A new sensor system being developed at the University of Missouri-Rolla may help get rescue personnel to the scene faster the next time a tornado or terrorist damages a bridge or other structure because of its ability to “memorize” the location of the damage.



Unlike all other infrastructure-embedded sensors, which reset following the disaster, the distributed cable sensors under development at UMR could “memorize” the most severe damage that occurred during a prior catastrophic event, allowing for an immediate assessment of the structure’s performance and integrity.

“This is critical to making a rapid decision for emergency responses and evaluations immediately following the catastrophic event,” says Dr. Genda Chen, associate professor of civil engineering at UMR. “The current practice requires sending an engineer inspector to every bridge along the emergency vehicle route to get into the striking area to rescue people. In the future, you could use a hand-held piece of equipment to detect whether there’s damage or not. We can detect the location and severity of damage areas within two inches.”


The same distributed sensor system can also find cracks and other damage not seen during visual inspection, Chen says. “The problem with visual inspections is that many of this damage in columns can’t be seen after the earthquake or disaster is over,” Chen explains. “Cracks on the columns are typically closed immediately after an earthquake due to gravity loads. You won’t be able to see them with your eyes – but this sensor can pick them up.”

The distributed sensor system could provide a more accurate damage assessment, Chen says. For example, when the 1994 Northridge earthquake shook residents of the Los Angeles area, it also caused widespread damage to sections of major freeways, parking structures and office buildings. However, a visual inspection found some areas did not appear to be affected by the strong seismic movements.

“Most of the steel-beam column weld areas were cracked severely,” Chen says. “But you couldn’t see that from the outside because those areas had a fireproof cover and architecture covering the bare steel material. People didn’t know about the cracks until after inspection, when they opened up the structure joint. They had to open up every structure since then.”

Researchers tested a prototype cable sensor on a fifth-scale reinforced-concrete column inside a three-story high-bay structures laboratory on campus before installing the system in a Missouri bridge in fall 2003. Made from a Teflon-insulated copper wire surrounded by a solder-coated steel spiral layer, the cable sensor can be embedded in lengths of up to 100 feet.

Working with Chen on the project are Dr. David Pommerenke, associate professor of electrical and computer engineering at UMR, and Dr. James Drewniak, director of the UMR Materials Research Center and a professor of electrical and computer engineering. The team has received $240,000 over a period of three years from the National Science Foundation to support the research.

Based on the research team’s success, the New York Department of Transportation has asked the group to develop a pressure sensor that can monitor how much load a bridge bearing can carry.

In addition, the California Department of Transportation would like the team to use the sensor system to measure the performance of piles. “With this system, they could tell what’s going on underneath the ground – where you can’t see anything,” Chen adds.

Chen and his research team are also looking to develop a way to network the cable sensors for use in buildings.

| newswise
Further information:
http://www.umr.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>