Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival of the fastest: scientists ’selectively breed’ winning Formula One cars

17.06.2004


Speed is the name of the game in the world of racing and now UCL scientists have developed a technique that ’breeds’ winning Formula One cars.



By applying Darwinian principles to the art of motor racing, the researchers demonstrate in simulations that it’s possible to knock crucial tenths of a second off lap time by tailoring a car’s setup to whatever conditions are faced on the track.

In a paper to be presented later this month at a conference in Seattle, researchers will report on a new computer model based on genetic algorithms that optimises performance by selectively combining the best settings of Formula One cars to produce the ultimate configuration.


Results show it’s possible to shave 0.88 of a second per lap from the best time. In an industry where 1/100th of a second can separate a winner from a loser, that can make all the difference.

Dr. Peter Bentley, leader of the Digital Biology Group at UCL’s Department of Computer Science and senior author of the study, says:

"Formula One spends millions each year designing and applying the latest technology to ensure their cars can handle whatever is thrown at them on the track. Each car can be modified in hundreds of way to optimise performance. Even minor changes in wing height, suspension stiffness or type of tyre rubber are ’tweaked’ to give them the competitive edge.

"Before every race, attempts are made to optimise settings for given conditions but cars are so finely calibrated than even subtle changes in temperature can affect performance. Decisions are based on experience but there are no guarantees they will always get it right.

"By running simulations we were able to distinguish how different facets of the car perform. Each best performance solution was treated as though it had its own genes that define those parameters. These winning solutions were then bred to produce the next generation, which combined the best settings of both parent cars until eventually we evolved the ultimate Formula One vehicle setup."

Genetic algorithms are an emerging technology that unites the fields of biology and computer science by mimicking the process of evolution in computers in an effort to find the best solutions to complex problems. A number of possible solutions to the problem are treated as ’organisms’ known as phenotypes. These are placed into a simulated environment, allowing them to be judged by a set of conditions. Only the better phenotypes survive and they produce ’children’ in the next generation. These children are then judged in the environment, the better ones have children, and so on. After a number of generations have passed, fitter phenotypes evolve with new forms better suited to the task required.

The researchers configured 68 parameters in the simulation car, which affected suspension, the engine, tyre and brake pressure, fuel consumption and steering control. Variables included:


anti-sway – has an effect on the under/over-steer for the car and the contact that the tyres have with the ground
gear ratios – effects the acceleration of the car
wings – change the downwards force of the vehicle and its grip on the road
Five experiments were performed using a racing simulation designed by Electronic Arts. The first four experiments tested the car on the UK’s Silverstone track. Population size and the number of generations were varied to determine the effect on optimisation. The final run was tested on Germany’s Nurburgring track to assess whether the evolved car could still be a winner on a track that presented different challenges.

Mr. Krzysztof Wloch, of UCL’s Department of Computer Science and lead author of the study, explains:

"Silverstone is generally a fast circuit with several slow corners and a selection of fast sweeping turns. This allowed us to test cars that are tuned for higher speed, with less down force for cornering. In contrast Nurburgring is a very twisty and tough track. That means cars need to be configured for high-down force to handle tight corners at speed."

At Silverstone, lap time was improved from 1 minute 27.005 seconds to 1 minute 21.050 seconds. Similarly, optimal lap time at Nurburgring improved by seven per cent.

To verify results, a virtual race was set up at Silverstone using cars configured using: genetic algorithms; the default settings of the simulator; human tuning; and an Internet expert. Results placed the evolved setting first with a time of 1 minute 20.349 seconds. The expert setting came second, 0.879 seconds slower. The human tuning came third with a time 1.09 seconds slower. The default settings came last, a massive 2.42 seconds behind. In real life, the fastest lap for Silverstone in 2003 was 1 minute 21.209 seconds.

"The real test would be to use our system in an actual Formula One car," says Dr Bentley. "At present have they have their own software that monitors performance during a race. Using our system you could evolve the car setup while the racing is going on. So if a car was damaged, at the next pit stop you could optimise the settings to offset whatever has gone wrong. You could even beam changes to the car while it is on the track, but somehow I don’t think racing authorities would go for that."

Details of the study will also appear in this week’s New Scientist magazine (19/06/04).


For further information please contact
Judith H. Moore
Media Relations Manager
University College London
Tel: 44-0-20-7679-7678
Mobile: 44-0-77-3330-7596
Email: judith.moore@ucl.ac.uk

Judith H Moore | EurekAlert!
Further information:
http://www.ucl.ac.uk/

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>