Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desktop computers to counsel users to make better decisions

23.01.2004


What if a personal computer knew how its user is feeling?



That computer on your desk is just your helper. But soon it may become a very close friend. Now it sends your e-mails, links you to the Web, does your computations, and pays your bills. Soon it could warn you when you’re talking too much at a meeting, if scientists at Sandia National Laboratories’ Advanced Concepts Group have their way. Or it could alert others in your group to be attentive when you have something important to say.

Aided by tiny sensors and transmitters called a PAL (Personal Assistance Link) your machine (with your permission) will become an anthroscope - an investigator of your up-to-the-moment vital signs, says Sandia project manager Peter Merkle. It will monitor your perspiration and heartbeat, read your facial expressions and head motions, analyze your voice tones, and correlate these to keep you informed with a running account of how you are feeling - something you may be ignoring - instead of waiting passively for your factual questions. It also will transmit this information to others in your group so that everyone can work together more effectively.


"We’re observing humans by using a lot of bandwidth across a broad spectrum of human activity," says Merkle, who uses a Tom Clancy-based computer game played jointly by four to six participants to develop a baseline understanding of human response under stress.

"If someone’s really excited during the game and that’s correlated with poor performance, the machine might tell him to slow down via a pop-up message," says Merkle. "On the other hand, it might tell the team leader, ’Take Bill out of loop, we don’t want him monitoring the space shuttle today. He’s had too much coffee and too little sleep. Sally, though, is giving off the right signals to do a great job.’"

The idea of the devices has occasioned some merry feedback, as from a corporate executive who emailed, "Where do we get the version that tells people they are boring in meetings? Please hurry and send that system to us. A truck full or two should cover us."

More seriously, preliminary results on five people interacting in 12 sessions beginning Aug. 18 indicate that personal sensor readings caused lower arousal states, improved teamwork and better leadership in longer collaborations. A lowered arousal state - the amount of energy put into being aware - is preferable in dealing competently with continuing threat.

The focus behind the $200,000 effort, funded by Sandia’s Laboratory-Directed Research and Development program, is to map the characteristics that correlate to "personal-best" performances.

"The question is, how do we correlate what we observe with optimum performance, so that we improve your ability and the ability of your team leader to make decisions? He can’t tell, for example, that your pulse is racing. We’re extending his ability," says Merkle.

Those concerned about privacy - who see this as an incursion similar to HAL’s, the supercomputer that took over the spaceship in the movie 2001 - can always opt out, he says, just like people choose not to respond to emails or decline to attend meetings.

But in a sense, he says, the procedure is no different from that followed by people who have heart problems: they routinely wear a monitor home to keep informed of their vital signs.

"In our game, what we learn from your vital signs can help you in the same way," he says. "It’s almost absurd on its face to think you can’t correlate physiological behavior with the day’s competence."

After gaining generic maps of individual performance, the information would be linked in a working group through a program called Mentor.

No theory yet exists to explain why or how optimal group performances will be achieved through more extensive computer linkages. But Merkle doesn’t think he needs one.

"Some people think you have to start with a theory. Darwin didn’t go with a theory. He went where his subjects were and started taking notes. Same here," he says. Merkle presented a paper on his group’s work at the NASA Human Performance conference Oct. 28-29 in Houston. "Before we knew that deep-ocean hydrothermal vents existed, we had complex theories about what governed the chemistry of the oceans. They were wrong."

Now it’s state-of-the-art to use EEG systems to link up brain events to social interactions, he says. "Let’s get the data and find out what’s real."

The tools for such a project - accelerometers to measure motion, face-recognition software, EMGs to measure muscle activity, EKGs to measure heart beat, blood volume pulse oximetry to measure oxygen saturation, a Pneumotrace(tm) respiration monitor to measure breathing depth and rapidity - are all off-the-shelf items.

"We give off so much information. But our only current way of interacting with a computer is very limited: through, essentially, a keyboard and mouse. So the limitation of my computer’s ability to help me - this increasingly complex, wonderful machine with its ability to recognize intricate patterns - is its inability to recognize complex patterns in me."

Is all this really necessary? He answers with some humor, "Not at all. You can always ride a horse; you don’t need an automatic transmission."

Asked whether this mechanistic view of human behavior can be accurate when many athletes, scientists, and artists have described themselves as feeling poorly yet made unusual gains in their work, and polygraphers have been unable to locate spymasters based on similar reading of vital signs, Merkle replies: "I would not say that we have a mechanistic view, unless one considers studying precedent to be a mechanism. Based on a history of prior performance, we make a prediction on likelihood of suitability for current tasks. It’s no different from making decisions based on baseball statistics: against left-handed batters in the last 200 night games, this person hits .207, so pinch hit the .298 person for him."

Further work is anticipated in joint projects between Sandia and the University of New Mexico, and also with Caltech.

"In 2004 we intend to integrate simultaneous four-person 128-channel EEG recording," says Merkle, "correlating brain events, physiologic dynamics, and social phenomena to develop assistive methods to improve group and individual performance."

To complement this applied research, Sandia is supporting a $50,000 graduate fellowship to study the neurology of learning processes under the Caltech Campus Executive program.

The Sandia project teamed with small business to produce the apparatus. Dave Warner, Steve Birch, and Tim Murphy of MindTel LLC, of Syracuse, N.Y., delivered the prototype with off-the-shelf components and custom software, based on an inexpensive networked PC platform, under budget in only 71 days, says Merkle.

Neal Singer | Sandia
Further information:
http://www.sandia.gov/news-center/news-releases/2004/gen-science/mentor.html

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>