Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s first tunable ‘photon copier’ on a chip enables key function for all-optical network

16.06.2003


A research team at the University of California at Santa Barbara (UCSB) has for the first time incorporated on a single chip both a widely tunable laser and an all-optical wavelength converter, thereby creating an integrated photonic circuit for transcribing data from one color of light to another. Such a device is key to realizing an all-optical network. This research is being funded by a Defense Advanced Research Project Agency (DARPA) Microsystems Technology Office (MTO) grant to push the boundary for photonic-circuit functional integration.



Think about data transmission over the Internet in terms of a telephone call between Los Angeles and New York. What enables two people to talk is the "dedicated" line between them. On the Internet the long-distance transport of information between the two cities is via optical fibers or light pipes, which can move numerous colors of light over a single fiber at the same time with each color representing a "dedicated" line for the transmission of data (i.e., wavelength division multiplexing [WDM]).

Data moves between coasts through nodes of the Internet located in cities like Phoenix or Houston, where the capability is needed to switch information arriving on one fiber as orange photons to continue the next leg of their journey on another fiber as red photons because the channel for orange on that fiber is in use. Today, this switching from one color to another has to be done by converting photons to electrons, switching electronically, and converting electrons back to photons.


The new postage-stamp-size device is a tunable "photon copier," which eliminates electronics as the middleman.

It is as if information on orange paper were being copied onto red paper. The information stays the same, but the color of the paper on which it is conveyed is different. By that analogy the tunable laser supplies the red paper, and the wavelength converter functions as the copy-machine transcribing the information of the orange original to red. The tunable laser is able to supply a wide range of colors and hues to copy onto, and the wavelength converter is able to maintain or improve the quality of the image, a process called "regeneration."

Past attempts to engineer photonic circuits with tunable lasers and wavelength converters have met with limited success, and the two components have heretofore lived on separate chips. Fabricating them on the same indium phosphide platform and thereby integrating them represents a technological breakthrough and greatly enhances performance and commercial feasibility. Integration provides many benefits, which include, notably, maintaining the quality of the signal by avoiding the taking of light on and off the chip many times.

In electronics, one semiconductor component incorporating two capabilities typically costs much less than half of what two separate components, each supplying one of those capabilities, costs. Photonics requires breakthroughs to follow these same laws of integration.

Daniel Blumenthal, leader of the research group and a UCSB professor of electrical and computer engineering, figures this successful demonstration of two capabilities on one photonic chip means more to come. "People are now accustomed," he said, "to think of a silicon substrate with a seemingly innumerable number of transistors on it. But that sophisticated electronic technology of today began back in the 1960s with a couple of transistors, and photonics is just beginning to enter that stage. We have been working long and hard at cracking this problem, and we are finally at the demonstration phase."

UCSB graduate student Milan Masanovic presented the findings (in a paper entitled "Demonstration of Monolithically-Integrated InP Widely-Tunable Laser and SOA-MZI Wavelength Converter") at the 15th annual meeting of the Indium Phosphide and Related Materials Conference, held in May in Santa Barbara. That presentation earned him the conference Best Student Paper Award.

The paper states, "The monolithic integration of tunable lasers and all-optical wavelength converters is a critical step towards realizing truly optical switches and networks. These structures allow data to be imprinted from an input wavelength to a tunable output wavelength without passing the signal through electronics."

Masanovic is a student jointly of Blumenthal and the paper’s other faculty author and research team co-leader, Larry Coldren, who is the inventor of the tunable laser used in this device, which is called a Sampled-Grating Distributed-Bragg-Reflector laser (SGDBR). A "tunable" laser enables the dialing up of different colors (i.e., a single miniscule device can be programmed to emit at one frequency and then re-programmed to emit at another by electronically changing the effective optical length of its cavity and the shape of its internal color filter).

The all-optical wavelength converter is an SOA-based Mach-Zehnder interferometer (SOA-MZI), which the papers’ authors note "also implements the significant feature of digital signal regeneration." Digital regeneration is key to moving optical signals around a network with many nodes and long stretches of fiber in between and is a feature that electronics uses pervasively.

The other three authors on the paper are Blumenthal’s graduate student Vikrant Lal and Coldren’s students Erik Skogen and Jonathon Barton.

The research is being conducted under the auspices of a four-year, $3.5 million DARPA grant through the Microsystems Technology Office (MTO) Chip-Scale WDM program to investigate how to pipe digital and analog information through a photonic circuit on a single compound semiconductor chip; Dr. Jagdeep Shah is the program manager. Blumenthal, who serves as associate director of the UCSB Multidisciplinary Optical Switching Technology (MOST) Center, is the principal investigator for the grant. The other four UCSB researchers are all professors of electrical and computer engineering: Coldren, director of the Optoelectronics Technology Center (OTC); John Bowers, director of MOST; Evelyn Hu, acting director of the California NanoSystems Institute (CNSI); and Nadir Dagli.

Jacquelyn Savani | EurekAlert!
Further information:
http://www.engineering.ucsb.edu/

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>