Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software creates dictionary for retrieving images

04.12.2002


New software that responds to written questions by retrieving digital images has potentially broad application, ranging from helping radiologists compare mammograms to streamlining museum curators’ archiving of artwork, say the Penn State researchers who developed the technology.



Dr. James Z. Wang, assistant professor in Penn State’s School of Information Sciences and Technology and principal investigator, says the Automatic Linguistic Indexing of Pictures (ALIP) system first builds a pictorial dictionary, and then uses it for associating images with keywords. The new technology functions like a human expert who annotates or classifies terms.

"While the prototype is in its infancy, it has demonstrated great potential for use in biomedicine by reading x-rays and CT scans as well as in digital libraries, business, Web searches and the military," said Wang, who holds the PNC Technologies Career Development Professorship at IST and also is a member of the Department of Computer Science and Engineering.


ALIP processes images the way people seem to. When we see a new kind of vehicle with two wheels, a seat and a handlebar, for instance, we recognize it as "a bicycle" from information about related images stored in our brains. ALIP has a similar bank of statistical models "learned" from analyzing image features.

The system is detailed in a paper, "Learning-based Linguistic Indexing of Pictures with 2-D MHMMs," to be given today (Dec. 4) at the Association of Computing Machinery’s (ACM) Multimedia Conference in Juan Les Pins, France. Co-author is Dr. Jia Li, Penn State assistant professor of statistics.

Unlike other content-based retrieval systems that compare features of visually similar images, ALIP uses verbal cues that range from simple concepts such as "flowers" and "mushrooms" to higher-level ones such as "rural" and "European." ALIP also can classify images into a larger number of categories than other systems, thereby broadening the uses of image databases.

Other advantages include ALIP’s abilities to be trained with a relatively large number of concepts simultaneously and with images that are not necessarily visually similar.

In one experiment, Wang and Li "trained" ALIP with 24,000 photographs found on 600 CD-ROMs, with each CD-ROM collection assigned keywords to describe its content. After "learning" these images, the computer then automatically created a dictionary of concepts such as "building," "landscape," and "European." Statistical modeling enabled ALIP to automatically index new or unlearned images with the linguistic terms of the dictionary.

Wang tested that dictionary with 5,000 randomly selected images to see if the computer could provide meaningful keyword annotations for the new images. His conclusion: The more specific the query for an image, the higher the system’s degree of accuracy in retrieving an appropriate image.

Wang and Li are using ALIP as part of a three-year National Science Foundation research project to develop digital imagery technologies for the preservation and cataloguing of Asian art and cultural heritages. This research aims to bypass or reduce the efforts in the labor-intensive creation and entry of manual descriptions or artwork.

Eventually, the system is expected to identify the discriminating features of Chinese landscape paintings and the distinguishing characteristics of paintings from different historical periods, Wang notes.

The researchers’ progress in the first year of that project is discussed in the paper, "Interdisciplinary Research to Advance Digital Imagery Indexing and Retrieval Technologies for Asian Art and Cultural Heritages." The research will be presented on Dec. 6 at in a special session of ACM’s Multimedia Conference in France.

Further research will be aimed at improving ALIP’s accuracy and speed.

ALIP’s reading of a beach scene with sailboats yielded the keyword annotations of "ocean," "paradise," "San Diego," "Thailand," "beach" and "fish." Even though the computer was intelligent enough to recognize the high-level concept of "paradise," additional research will focus on making the technology more accurate, so that San Diego and Thailand will not appear in the annotation of the same picture, Wang says.

"This system has the potential to change how we handle images in our daily life by giving us better and more access," Wang says. Wang and Li’s latest research builds on their earlier efforts at Stanford University. Sun Microsystems provided most of the equipment used in the project.

Margaret Hopkins | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>