Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD researchers develop revolutionary computer interface technology

08.10.2002


University of Delaware researchers have developed a revolutionary computer interface technology that promises to put the bite on the traditional mouse and mechanical keyboard.




“This is not just a little step in improving the mouse, this is the first step in a new way of communicating with the computer through gestures and the movements of your hands. This is, after all, one of the ways humans interact.” John Elias, UD professor of electrical and computer engineering, said.

Elias and Wayne Westerman, UD visiting assistant professor of electrical and computer engineering, have been working on the new interface for about five years and are now marketing their iGesture product through a company called FingerWorks.


The project started as a doctoral thesis by Westerman, who was then a UD graduate student working with Elias.

The FingerWorks name fits because the technology uses a touch pad and a range of finger motions to communicate commands and keys to the computer. To open a file, you rotate your hand as if opening a jar; to zoom or de-zoom, you expand or contract your hand.

Elias said the communication power of their system is “thousands of times greater” than that of a mouse, which uses just a single moving point as the main input. Using this new technology, two human hands provide 10 points of contact, with a wide range of motion for each, thus providing thousands of different patterns, each of which can mean something different to the computer.

While much about the computer has changed over the last three decades–greater power, faster speeds, more memory–what has not changed is the user interface.

“For what it was invented for, the mouse does a good job,” Elias said. “People accept the mouse and the mechanical keyboard because that’s the way it is. But there are limitations in terms of information flow. There is so much power in the computer, and so much power in the human, but the present situation results in a communications bottleneck between the two.”

Elias and Westerman have a better idea. “I believe we are on the verge of changing the way people interact with computers,” Elias said. “Imagine trying to communicate with another human being using just a mouse and a keyboard. It works, but it is slow and tedious.”

Elias said he could envision in the next 10 years “a very complex gestural language between man and machine.”

The system is a multi-touch, zero force technology, Elias said, meaning the gestures and movements use all the fingers in a light and subtle manner.

Because of that, the system has a second major advantage over the mouse and mechanical keyboard because it can greatly reduce stress injuries such as tendonitis and carpal tunnel syndrome attributed to traditional computer work.

The company markets both stand-alone touch pads and touch pads built into nonmechanical keyboards. In the keyboards, the keys overlap the touch pad so the operator does not have to move his hands when switching between typing and using the mouse. Rather, everything can be done in a smoother flow of hand motions.

Elias explained the touch pad acts like a video camera, recording the objects touching its surface. An embedded microprocessor then applies an algorithmic process to convert those touches into commands understood by the computer.

“To observers watching somebody use multi-touch, it looks a little like magic,” Elias said, illustrating his point on a computer in Evans Hall. “People see lots of things happening on the computer screen but very little hand motion is observed.”

He said the system has been designed so the gestures used make sense for the operation being performed. For instance, you cut text with a pinch and paste it with a flick.

Eventually, he said, the computer password could be a gesture known only to the user.

Elias said people often think that speech recognition systems will become the ultimate user interface. “Voice commands are good for many things but terrible for other things,” Elias said, adding he believes there are inherent problems with a speech-only interface.

“If you want to test this claim, you can do so with a perfect speech recognition system–another human being,” Elias said. “Put somebody in front of your computer and try to do your work by issuing voice commands to him. You’ll quickly find that many common tasks are difficult to do using speech, even though your ‘computer interface’ understands you perfectly.”

Using hand and finger motion to input commands is, for many tasks, much more effective than trying to explain what you want to do in words, he said.

The system is being used at several work stations in Evans Hall and the reaction is largely favorable. It is something of a challenge for some workers, Elias said, because it is like learning a new language.

Susan Foster, UD vice president of information technologies, said she is impressed with the interface and plans to adopt it for use at several computer sites around campus.

“The device is the result of new thinking about the ‘bandwidth’ that constrains the physical interaction between operator and computer,” Foster said. “It capitalizes on human gestures, which are easy to understand and execute. Once learned, like other motor skills, they are readily retained. The assistive qualities of the device also make it quite useful for those with limitations on upper extremity use.”

The plug-and-play device, which requires no special software, should be of particular interest to programmers, graphic designers and editors, Foster said, and she is recommending they consider making use of a new technology that was “born and bred at UD and under continuing development here.”

Neil Thomas | EurekAlert!
Further information:
http://www.fingerworks.com

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>