Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powering up microwave amplifiers for a wireless world

09.07.2008
Four years ago, Europe trailed the rest of the world in microwave amplifier research and development. Now, however, European-designed transistors and amplifiers equal or outperform the competition worldwide.

Today’s information-rich, wireless world depends on microwave amplifiers that operate efficiently and linearly at high power and high frequencies, so it is crucial that Europe is at the forefront of such research.

Europe’s rapid advance into the front ranks of microwave amplifier research and development was stimulated to a large degree by European researchers in the TARGET project.

TARGET was a four-year effort that linked researchers and laboratories across Europe into an agile and aggressive research and development community.

Guided and energised by TARGET, formerly uncoordinated European research into microwave amplifier development has become “ambitious, highly successful, and collaborative”, says TARGET’s scientific coordinator, Gottfried Magerl at the Technical University of Vienna.

The EU-funded project’s first challenge was to coordinate the efforts and expertise of 49 core laboratories, research centres, and businesses scattered across 16 countries.

The TARGET team tackled the problem in part by using sophisticated software to create a virtual research centre. Wherever they are, members can communicate readily with each other and access a common pool of software, documents and data.

This virtual community was supplemented by frequent face-to-face meetings, tutorials, and research collaborations.

The result, says Magerl, “is a very special kind of team spirit that is still alive”.

TARGET’s network coordinator, Sue Ivan at the telecommunications Research Center in Vienna, adds that the project grew into the largest international research co-operation in civilian microwave engineering history.

Real research in a virtual lab
TARGET researchers found early on that measuring devices and analytic software in different laboratories produced different readings from the same component.

This surprising discovery motivated them to go to great lengths to ensure that the nine co-operating laboratories used comparable equipment and analytic tools and so could produce equivalent results.

In addition, the labs were linked together via a shared computer interface and a powerful design language, XML, which let them manage and share mathematical models, research protocols and the resulting data.

The result was a Europe-wide virtual laboratory in which researchers can quickly and seamlessly perform all the steps needed to design, fabricate, and assess the performance of new components, amplifiers, and systems.

“The steps may be made by several different labs, situated maybe in Vienna, Torino, Lille, and Rome,” says Magerl. “Yet you think you get your results from one expert lab.”

Expanded horizons, award-winning results
Although the TARGET team’s central focus was on designing better microwave power amplifiers, they soon realised that for the programme to succeed, they needed a broader vision.

In the end, they developed expertise in a full spectrum of activities, from the fabrication and characterisation of basic semiconductor devices to the design of entire broadband transmission systems.

Spurred by the realisation that the field needed better tools for modelling the non-linear behaviour of components, sub-systems and complete amplifiers, TARGET researchers developed so much expertise in the area that they have literally written ‘the book’ on the subject, to be published in October 2008.

Before TARGET, European manufacturers of Gallium nitride amplifiers trailed their North American and Asian competitors in terms of power output across the frequency spectrum.

But in just four years, the manufacturers have doubled the power of their amplifiers, matching or exceeding their competitors, especially at the high frequencies needed for heavy data loads.

Building on the foundation of their coordinated virtual labs and modelling expertise, TARGET’s connected labs quickly began to turn out amplifiers that were both powerful and efficient – intrinsically competing qualities that rarely appear together.

In 2005, they produced a six-watt amplifier that operated at close to 60% efficiency, and which garnered an international prize.

Magerl explains that the combination of a high efficiency and a linear response, although extremely hard to achieve, is a key issue.

“For mobile phones it decides battery lifetime and quality of service,” he says. “For base stations it decides operational costs.”

TARGET, which received funding from the EU's Sixth Framework Programme for research, resulted in 35 joint research projects, 63 journal papers, and 340 conference presentations, among other achievements.

“TARGET has become a brand name in the microwave community,” says Magerl.

TARGET’s researchers feel that the combination of precise measurement, powerful models, and fast turn-around times can now allow manufacturers to produce better and more creative designs, while reducing the time it takes for an idea to move from a perceived need to a finished product.

TARGET researchers hope that the level of expertise developed through the project will be its legacy to the European research and development community.

“We think that we achieved more than just the sum of our efforts,” says Magerl. “TARGET can serve as a showcase of how to convince competitors to co-operate and to create a win-win situation.”

Christian Nielsen | alfa
Further information:
http://www.esn.eu
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89846

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>