Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spanish scientists design a procedure for detecting shadows in satellite images

Scientists from the University of Malaga have devised a procedure for accurately identifying shadows in high-resolution images captured by satellites, making it possible to obtain more precise information on streets, buildings, vehicles, crops and other elements detected from space.

The results of this research have been passed to a company in the Parque Tecnológico de Andalucía (Andalusia Technology Park) which is already applying them in satellite image processing and detection of urban changes.

The Professor of the IT Engineering School at the University of Malaga and co-author of the study, Vicente Arévalo, explained to SINC that high-resolution images provided by current satellites and planes “have opened a new era in the field of teledetection, and that resolution enhancement also means that shadows, something inherent in any image, take on special significance”.

For example, shadows fall on buildings, cars or street furniture, the researcher commented, and in an aerial photograph “it is very important to detect what is or is not a shadow to correctly identify the elements that appear in it”.

Arévalo pointed out that the identification of shadows enables the subsequent application of specific information recovery techniques, as well as the preparation of three-dimensional designs. Thanks to the shadows, IT engineers can estimate, amongst other parameters, the height of elements in a landscape, such as a house.

To carry out this study, researchers have used images captured by the QuickBird satellite, also used for capturing aerial photographs of the Google Earth virtual atlas. Images obtained with this satellite have a 60 cm/pixel resolution, i.e. 60 cm of the real terrain captured in a pixel (the smallest unit comprising a digital image, defined by its brightness and colour). Once the image has been taken, its colour components are analysed and the so-called “seeds”, small groups of pixels that have a greater probability of being shadows, are identified through circles. To these “seeds” other surrounding pixels are added which are significant statistically for detecting the shadowy areas of the photo as accurately as possible in a process in which other tools such as edge detectors are also used.

The method developed by Andalusian researchers has been successfully tested in images obtained under different lighting conditions, in both urban and rural areas. For example, in a field of olive trees, it is easy to quantify the trees and see their size more accurately if shadows are properly identified in the high resolution images.

However, scientists’ main line of work is to detect urban changes, seeing how certain areas of cities change over time. Their studies make it possible to detect things ranging from earth movements or changes in the area to discovering whether anyone has built a swimming pool on their land. “We do not judge the legality of these types of actions”, Arévalo said, but the high resolution images of areas do help the work of surveyors.

SINC Team | alfa
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>