Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists design a procedure for detecting shadows in satellite images

02.06.2008
Scientists from the University of Malaga have devised a procedure for accurately identifying shadows in high-resolution images captured by satellites, making it possible to obtain more precise information on streets, buildings, vehicles, crops and other elements detected from space.

The results of this research have been passed to a company in the Parque Tecnológico de Andalucía (Andalusia Technology Park) which is already applying them in satellite image processing and detection of urban changes.

The Professor of the IT Engineering School at the University of Malaga and co-author of the study, Vicente Arévalo, explained to SINC that high-resolution images provided by current satellites and planes “have opened a new era in the field of teledetection, and that resolution enhancement also means that shadows, something inherent in any image, take on special significance”.

For example, shadows fall on buildings, cars or street furniture, the researcher commented, and in an aerial photograph “it is very important to detect what is or is not a shadow to correctly identify the elements that appear in it”.

Arévalo pointed out that the identification of shadows enables the subsequent application of specific information recovery techniques, as well as the preparation of three-dimensional designs. Thanks to the shadows, IT engineers can estimate, amongst other parameters, the height of elements in a landscape, such as a house.

To carry out this study, researchers have used images captured by the QuickBird satellite, also used for capturing aerial photographs of the Google Earth virtual atlas. Images obtained with this satellite have a 60 cm/pixel resolution, i.e. 60 cm of the real terrain captured in a pixel (the smallest unit comprising a digital image, defined by its brightness and colour). Once the image has been taken, its colour components are analysed and the so-called “seeds”, small groups of pixels that have a greater probability of being shadows, are identified through circles. To these “seeds” other surrounding pixels are added which are significant statistically for detecting the shadowy areas of the photo as accurately as possible in a process in which other tools such as edge detectors are also used.

The method developed by Andalusian researchers has been successfully tested in images obtained under different lighting conditions, in both urban and rural areas. For example, in a field of olive trees, it is easy to quantify the trees and see their size more accurately if shadows are properly identified in the high resolution images.

However, scientists’ main line of work is to detect urban changes, seeing how certain areas of cities change over time. Their studies make it possible to detect things ranging from earth movements or changes in the area to discovering whether anyone has built a swimming pool on their land. “We do not judge the legality of these types of actions”, Arévalo said, but the high resolution images of areas do help the work of surveyors.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>