Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing bug perception into robots

13.05.2008
Insects have provided the inspiration for a team of European researchers seeking to improve the functionality of robots and robotic tools.

The research furthers the development of more intelligent robots, which can then be used by industry, and by emergency and security services, among others. Smarter robots would be better able to find humans buried beneath the rubble of a collapsed building, for example.

The EU-funded SPARK project set out to develop a new robot control architecture for roving robots inspired by the principles governing the behaviour of living systems and based on the concept of self-organisation.

Basing their work on the basic functions of the insect brain, the team developed a new architecture for artificial cognitive systems that could significantly increase the ability of robots to react to changing environmental conditions and to ‘learn’ behaviour in response to external stimuli.

The research team calls their new software architecture a spatial-temporal array computer based structure (SPARC).

Robots are complex systems that rely on software, hardware and mechanical systems all working together. One of the challenges facing researchers is to develop robots, or moving artefacts, that are capable of several different behaviours, that are able to sense or perceive external signals and, most importantly, are able to ‘learn’ and react appropriately to changing conditions.

For example, a robot travelling over unknown terrain may need to adapt its way of moving depending on whether it is navigating flat, rocky or wet ground. Or it may need to modify its course to reach a defined target.

The objective is to enable a robot to do this without human intervention, based on its own powers of perception and ability to adapt.

Powers of perception
Within the SPARC software architecture, the robot’s powers of perception are enhanced by its ability to use information derived from visual, audio and tactile sensors to form a dynamically evolving pattern. The pattern is in turn used to determine the movements of the device.

The researchers’ technical objective was to produce a moving artefact able to actively interact with its environment to carry out a set task.

The research so far has already provided a new theoretical framework, or paradigm, for active robot perception. The paradigm is based on principles borrowed from psychology, synergetics, artificial intelligence and non-linear dynamical systems theory.

Learning as you go
One of the researchers’ central objectives was to develop a machine with the ability to build knowledge independent of human control. Researchers based the proposed architecture for artificial cognitive systems on the basic building blocks of the insect brain.

“The SPARC architecture is a starting step toward emulating the essential perception-action architecture of living beings, where some basic behaviours are inherited, like escaping or feeding, while others are incrementally learned, leading to the emergence of higher cognitive abilities,” notes Paolo Arena, the project coordinator.

The cognitive system allows the device to autonomously ‘learn’ based on a combination of basic reflexive behaviours and feedback from external environmental data.

Once the robot is assigned a mission, compatible with its structural and mechanical capabilities – for example ‘find people alive’ – it is able to work out how best to do this itself in a particular external context.

“The robot will initially behave by using primarily the basic inherited behaviours,” says Arena. “Higher knowledge will be incrementally formed in the higher layer of the architecture, which is a neuron lattice based on the Reaction-Diffusion Cellular Non-linear Network (RD-CNN) paradigm, able to generate self-organising dynamic patterns.”

Basic behaviours incorporated in the demonstrations so far include, for example, the ability of a robot to direct itself towards a specific sound source. This optomotor reflex allows the robot to maintain heading and avoid obstacles.

During the course of the demonstration, the robot ‘learns’ how to safely reach the sound source. This it does while it is properly modulating its basic behaviours so it does not become trapped into the deadlock situations that are typical of complex and dynamically changing environments.

Next steps
The project’s experimental robots used some of the partners’ technologies, such as the real-time visual processing features of the Eye-RIS vision system, one of the lead products of Spain-based Innovaciones Microelectrònicas (Anafocus).

The project also attracted the interest of other commercial enterprises, including STMicroelectronics, which provided components and boards for Rover II, one of the robots developed by SPARK.

Altera, another company, supplied field-programmable gate array (FPGA) devices for the development and implementation of perceptual algorithms.

The advances made have led to a number of software and hardware innovations for the improvement of machine perception. The project’s industrial partners are continuing to work on the innovations.

The cognitive visual algorithms designed and improved by the project’s researchers have, for example, already been integrated into products produced by some of the project’s partners.

Hungary-based Analogic Computers, a partner in the project, has launched its InstantVision software package based on some of the research. The package has become one of the company’s lead products.

The work of the SPARK project is continuing with the SPARK II project, which will look more deeply into the details of insect brain neurobiology to refine, assess and generalise the SPARK cognitive architecture.

Further down the line, the research is expected to lead to the introduction of powerful and flexible machines suitable for use in dynamically changing environments where conditions are unstable or unpredictable, such as war zones or disaster areas.

The project has introduced a new model for action-oriented perception. Ongoing work will focus on assessing this model and on expanding it to a larger family of moving machines.

The SPARK project received funding from the EU's Sixth Framework Programme for research.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89726

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>