Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing bug perception into robots

13.05.2008
Insects have provided the inspiration for a team of European researchers seeking to improve the functionality of robots and robotic tools.

The research furthers the development of more intelligent robots, which can then be used by industry, and by emergency and security services, among others. Smarter robots would be better able to find humans buried beneath the rubble of a collapsed building, for example.

The EU-funded SPARK project set out to develop a new robot control architecture for roving robots inspired by the principles governing the behaviour of living systems and based on the concept of self-organisation.

Basing their work on the basic functions of the insect brain, the team developed a new architecture for artificial cognitive systems that could significantly increase the ability of robots to react to changing environmental conditions and to ‘learn’ behaviour in response to external stimuli.

The research team calls their new software architecture a spatial-temporal array computer based structure (SPARC).

Robots are complex systems that rely on software, hardware and mechanical systems all working together. One of the challenges facing researchers is to develop robots, or moving artefacts, that are capable of several different behaviours, that are able to sense or perceive external signals and, most importantly, are able to ‘learn’ and react appropriately to changing conditions.

For example, a robot travelling over unknown terrain may need to adapt its way of moving depending on whether it is navigating flat, rocky or wet ground. Or it may need to modify its course to reach a defined target.

The objective is to enable a robot to do this without human intervention, based on its own powers of perception and ability to adapt.

Powers of perception
Within the SPARC software architecture, the robot’s powers of perception are enhanced by its ability to use information derived from visual, audio and tactile sensors to form a dynamically evolving pattern. The pattern is in turn used to determine the movements of the device.

The researchers’ technical objective was to produce a moving artefact able to actively interact with its environment to carry out a set task.

The research so far has already provided a new theoretical framework, or paradigm, for active robot perception. The paradigm is based on principles borrowed from psychology, synergetics, artificial intelligence and non-linear dynamical systems theory.

Learning as you go
One of the researchers’ central objectives was to develop a machine with the ability to build knowledge independent of human control. Researchers based the proposed architecture for artificial cognitive systems on the basic building blocks of the insect brain.

“The SPARC architecture is a starting step toward emulating the essential perception-action architecture of living beings, where some basic behaviours are inherited, like escaping or feeding, while others are incrementally learned, leading to the emergence of higher cognitive abilities,” notes Paolo Arena, the project coordinator.

The cognitive system allows the device to autonomously ‘learn’ based on a combination of basic reflexive behaviours and feedback from external environmental data.

Once the robot is assigned a mission, compatible with its structural and mechanical capabilities – for example ‘find people alive’ – it is able to work out how best to do this itself in a particular external context.

“The robot will initially behave by using primarily the basic inherited behaviours,” says Arena. “Higher knowledge will be incrementally formed in the higher layer of the architecture, which is a neuron lattice based on the Reaction-Diffusion Cellular Non-linear Network (RD-CNN) paradigm, able to generate self-organising dynamic patterns.”

Basic behaviours incorporated in the demonstrations so far include, for example, the ability of a robot to direct itself towards a specific sound source. This optomotor reflex allows the robot to maintain heading and avoid obstacles.

During the course of the demonstration, the robot ‘learns’ how to safely reach the sound source. This it does while it is properly modulating its basic behaviours so it does not become trapped into the deadlock situations that are typical of complex and dynamically changing environments.

Next steps
The project’s experimental robots used some of the partners’ technologies, such as the real-time visual processing features of the Eye-RIS vision system, one of the lead products of Spain-based Innovaciones Microelectrònicas (Anafocus).

The project also attracted the interest of other commercial enterprises, including STMicroelectronics, which provided components and boards for Rover II, one of the robots developed by SPARK.

Altera, another company, supplied field-programmable gate array (FPGA) devices for the development and implementation of perceptual algorithms.

The advances made have led to a number of software and hardware innovations for the improvement of machine perception. The project’s industrial partners are continuing to work on the innovations.

The cognitive visual algorithms designed and improved by the project’s researchers have, for example, already been integrated into products produced by some of the project’s partners.

Hungary-based Analogic Computers, a partner in the project, has launched its InstantVision software package based on some of the research. The package has become one of the company’s lead products.

The work of the SPARK project is continuing with the SPARK II project, which will look more deeply into the details of insect brain neurobiology to refine, assess and generalise the SPARK cognitive architecture.

Further down the line, the research is expected to lead to the introduction of powerful and flexible machines suitable for use in dynamically changing environments where conditions are unstable or unpredictable, such as war zones or disaster areas.

The project has introduced a new model for action-oriented perception. Ongoing work will focus on assessing this model and on expanding it to a larger family of moving machines.

The SPARK project received funding from the EU's Sixth Framework Programme for research.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89726

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>