Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software to help solve mathematical models

07.04.2008
This week, UPM unveiled their latest research at the World's Largest Market-Place for Inventions in Geneva. This software will help solve 2nd and 3rd order ordinary differential equations and will be useful to solve many mathematical models.

This week, University Putra Malaysia's team unveiled their latest inventions and products at the 34th International Exhibition of Inventions, New Techniques and Products in Geneva (April 2-6, 2008), also known as the World's Largest Market-Place for Inventions.

This research is on a software to solve 2nd and 3rd order ordinary differential equations without modifying the structure of the problem tested i.e. not reducing it to the first order system. The code is useful to the scientist, engineers, applied mathematicians and educators to solve many mathematical models in the form of higher order ordinary differential equations in various areas including physics, chemistry, biology, engineering and economics.

TITLE: Direct Block Software for Solving Higher Order Ordinary Differential Equations

RESEARCHERS: Dr. Zanariah Abdul Majid and Prof. Dato’ Dr. Mohamed Suleiman

Contact details for Dr. Zanariah Abdul Majid
Department of Mathematics,
Faculty of Science,
Universiti Putra Malaysia,
43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
Tel: 03-89467959
Fax: 03-894377958
Email: zanariah@science.upm.edu.my
A structured and efficient algorithm of the new block method is developed for solving directly the second and third order system of ordinary differential equations (ODEs) using variable step size. This code will estimate the solutions of initial value problems at two points simultaneously in a block and therefore it may produce faster numerical results.

The higher order ODEs can be solved by reducing it to a system of first order ODEs and then solved using any numerical method i.e Euler method. This approach is very well established but it obviously will enlarge the system of first order ODEs. However, the developed code will solve the higher order ODEs directly without reducing it to the first order system. The aim is to solve the higher order ODEs as it appears and never modify the structure of the problem tested.

The code is suitable for solving the numerical integration of non stiff and mildly stiff higher order differential systems. The numerical results obtained are very efficient in terms of accuracy and timing. The source code developed would be useful to the scientist, engineers, applied mathematicians and educators to solve many mathematical models in the form of higher order ordinary differential equations in various areas including physics, chemistry, biology, engineering and economics.

Dr Nayan KANWAL | ResearchSEA
Further information:
http://www.inventions-geneva.ch/
http://www.science.upm.edu.my
http://www.researchsea.com

More articles from Information Technology:

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>