Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New breed of cognitive robot … a puppy?

26.03.2008
Designers of artificial cognitive systems have tended to adopt one of two approaches to building robots that can think for themselves: classical rule-based artificial intelligence or artificial neural networks.

Both have advantages and disadvantages, and combining the two offers the best of both worlds, say a team of European researchers who have developed a new breed of cognitive, learning robot that goes beyond the state of the art.

The researchers’ work brings together the two distinct but mutually supportive technologies that have been used to develop artificial cognitive systems (ACS) for different purposes. The classical approach to artificial intelligence (AI) relies on a rule-based system in which the designer largely supplies the knowledge and scene representations, making the robot follow a decision-making process – much like climbing through the branches of a tree – toward a predefined response.

Biologically inspired artificial neural networks (ANNs), on the other hand, rely on processing continuous signals and a non-linear optimisation process to reach a response which, due to the lack of preset rules, requires developers to carefully balance the system constraints and its freedom to act autonomously.

“Developing systems in classical AI is essentially a top-down approach, whereas in ANN it is a bottom-up approach,” explains Michael Felsberg, a researcher at the Computer Vision Laboratory of Linköping University in Sweden. “The problem is that, used individually, these systems have major shortcomings when it comes to developing advanced ACS architectures. ANN is too trivial to solve complex tasks, while classical AI cannot solve them if it has not been pre-programmed to do so.”

Beyond the state of the art
Working in the EU-funded COSPAL project, Felsberg’s team found that using the two technologies together solves many of those issues. In what the researchers believe to be the most advanced example of such a system developed anywhere in the world, they used ANN to handle the low-level functions based on the visual input their robots received and then employed classical AI on top of that in a supervisory function.

“In this way, we found it was possible for the robots to explore the world around them through direct interaction, create ways to act in it and then control their actions in accordance. This combines the advantages of classical AI, which is superior when it comes to functions akin to human rationality, and the advantages of ANN, which is superior at performing tasks for which humans would use their subconscious, things like basic motor skills and low-level cognitive tasks,” notes Felsberg.

The most important difference between the COSPAL approach and what had been the state of the art is that the researchers’ ACS is scalable. It is able to learn by itself and can solve increasingly complex tasks with no additional programming.

“There is a direct mapping from the visual precepts to performing the action,” Felsberg confirms. “With previous systems, if something in the environment changed that the low-level system was not programmed to recognise, it would give random responses but the supervising AI process would not realise anything was wrong. With our approach, the system realises something is different and if its actions do not result in success it tries something else,” the project coordinator explains.

“Like training a child or a puppy”
This trial-and-error learning approach was tested by making the COSPAL robot complete a shape-sorting puzzle, but without telling it what it had to do. As it tried to fit pegs into holes it gradually learnt what would fit where, allowing it to complete the puzzle more quickly and accurately each time.

“After visual bootstrapping, the only human input was from an operator who had two buttons, one to tell the robot it was successful and another to tell it that it had made a mistake. It is much like training a child or a puppy,” Felsberg says.

Though a learning, cognitive robot of the kind developed in COSPAL constitutes an important leap forward toward the development of more autonomous robots, Felsberg says it will be some time before robots gain anything close to human cognition and intelligence, if they ever do.

“In human terms, our robot is probably like a two or three year old child, and it will take a long time for the technology to progress into the equivalent of adulthood. I don’t think we will see it in our lifetimes,” he says.

Nonetheless, robots like those developed in COSPAL will undoubtedly start to play a greater role in our lives. The project partners are in the process of launching a follow-up project called DIPLECS to test their ACS architecture in a car. It will be used to make the vehicle cognitive and aware of its surroundings, creating an artificial co-pilot to increase safety no matter the weather, road or traffic conditions.

“In the real world you need a system that is capable of adapting to unforeseen circumstances, and that is the greatest accomplishment of our ACS,” Felsberg notes.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89628

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>