Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists simulate pandemic influenza outbreak in Chicago

11.03.2008
By using computer simulations and modeling, an international group of researchers including scientists from the Virginia Bioinformatics Institute (VBI) at Virginia Tech’s Network Dynamics and Simulation Science Laboratory (NDSSL) have determined how a pandemic influenza outbreak might travel through a city similar in size to Chicago, Ill.

This information helped them to determine the preferred intervention strategy to contain a potential flu pandemic, including what people should do to decrease the likelihood of disease transmission.

The new results, based on three different computer simulation models, are described in a paper published in the Proceedings of the National Academy of Sciences by scientists involved in the Models of Infectious Disease Agent Study (MIDAS).* MIDAS is a collaboration of research and informatics groups supported by the National Institutes of Health (NIH) to develop computational models to examine interactions between infectious agents and their hosts, disease spread, prediction systems, and response strategies.

The global epidemic of avian influenza in bird populations, as well as the risk of a virulent form of the bird flu virus being transferred to humans, has made influenza pandemic preparedness a top public health priority in the United States, Europe, and other countries. The great influenza pandemic of 1918 resulted in 40 to 50 million deaths worldwide. If a pandemic were to occur today, it could cause widespread social and economic disruptions.

In the paper, “Modeling Targeted Layered Containment of an Influenza Pandemic in the USA,” members of the MIDAS Working Group on Modeling Pandemic Influenza concluded that a timely implementation of targeted household antiviral prevention measures and a reduction in contact between individuals could substantially lower the spread of the disease until a vaccine was available.

The groups coordinated efforts to each create individual-based, computer simulation models to examine the impact of the same set of intervention strategies used during a pandemic outbreak in a population similar in size to Chicago, which has about 8.6 million residents. Intervention methods used were antiviral treatment and household isolation of identified cases, disease prevention strategies and quarantine of household contacts, school closings, and reducing workplace and community contacts. Although using the same population, each model had its own representation of the combinations of intervention. All of the simulations suggest that the combination of providing preemptive household antiviral treatments and minimizing contact could play a major role in reducing the spread of illness, with timely initiation and school closure serving as important factors.

“VBI’s computer simulation models are built on our detailed estimates for social contacts in an urban environment,” said VBI Professor and NDSSL Deputy Director Stephen Eubank, who leads the VBI team in the working group. “They provide a realistic picture of how social mixing patterns change under non-pharmaceutical interventions such as closing schools or workplaces. For example, when schools close, young students require a caregiver’s attention. That can disrupt social mixing patterns at work if a working parent stays home or make closing schools pointless if the children are placed in large day-care settings. We can use our model to suggest the best mix of intervention strategies in a variety of scenarios, taking factors like these into account.”

Bruno Sobral, Executive and Scientific Director of VBI, remarked: “Transdisciplinary science, which is the foundation of the way we do research at VBI, requires a special type of collaborative framework at the very outset of a project. The highly detailed social-network models that underpin this international research project arise from transdisciplinary science that removes disciplinary boundaries and promotes innovation. The impact of this approach to science is highlighted by the success of this research undertaking which benefits from a very clear interface between diverse experts in high-performance computing, disease modeling and public health practice.”

While the three different models used in the study show that timely intervention significantly impedes the spread of influenza through a population, the authors caution against over-interpretation of the modeling results. The researchers emphasize that the models are tools that provide guidance rather than being fully predictive. In the case of a future outbreak of pandemic influenza, capabilities such as real-time surveillance and other analyses will hopefully be available for the public health community and policy makers.

“These models, which are built from the best available data and with the best tools, contribute greatly to our understanding of how a pandemic could spread and what measures might protect the public’s health,” said Jeremy M. Berg, Ph.D., director of NIH’s National Institute of General Medical Sciences, which supports the MIDAS program. “But they are not our only resource—field work and experimental studies remain critical and will enhance the quality and reliability of these and other models.”

Susan Bland | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>