Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists simulate pandemic influenza outbreak in Chicago

By using computer simulations and modeling, an international group of researchers including scientists from the Virginia Bioinformatics Institute (VBI) at Virginia Tech’s Network Dynamics and Simulation Science Laboratory (NDSSL) have determined how a pandemic influenza outbreak might travel through a city similar in size to Chicago, Ill.

This information helped them to determine the preferred intervention strategy to contain a potential flu pandemic, including what people should do to decrease the likelihood of disease transmission.

The new results, based on three different computer simulation models, are described in a paper published in the Proceedings of the National Academy of Sciences by scientists involved in the Models of Infectious Disease Agent Study (MIDAS).* MIDAS is a collaboration of research and informatics groups supported by the National Institutes of Health (NIH) to develop computational models to examine interactions between infectious agents and their hosts, disease spread, prediction systems, and response strategies.

The global epidemic of avian influenza in bird populations, as well as the risk of a virulent form of the bird flu virus being transferred to humans, has made influenza pandemic preparedness a top public health priority in the United States, Europe, and other countries. The great influenza pandemic of 1918 resulted in 40 to 50 million deaths worldwide. If a pandemic were to occur today, it could cause widespread social and economic disruptions.

In the paper, “Modeling Targeted Layered Containment of an Influenza Pandemic in the USA,” members of the MIDAS Working Group on Modeling Pandemic Influenza concluded that a timely implementation of targeted household antiviral prevention measures and a reduction in contact between individuals could substantially lower the spread of the disease until a vaccine was available.

The groups coordinated efforts to each create individual-based, computer simulation models to examine the impact of the same set of intervention strategies used during a pandemic outbreak in a population similar in size to Chicago, which has about 8.6 million residents. Intervention methods used were antiviral treatment and household isolation of identified cases, disease prevention strategies and quarantine of household contacts, school closings, and reducing workplace and community contacts. Although using the same population, each model had its own representation of the combinations of intervention. All of the simulations suggest that the combination of providing preemptive household antiviral treatments and minimizing contact could play a major role in reducing the spread of illness, with timely initiation and school closure serving as important factors.

“VBI’s computer simulation models are built on our detailed estimates for social contacts in an urban environment,” said VBI Professor and NDSSL Deputy Director Stephen Eubank, who leads the VBI team in the working group. “They provide a realistic picture of how social mixing patterns change under non-pharmaceutical interventions such as closing schools or workplaces. For example, when schools close, young students require a caregiver’s attention. That can disrupt social mixing patterns at work if a working parent stays home or make closing schools pointless if the children are placed in large day-care settings. We can use our model to suggest the best mix of intervention strategies in a variety of scenarios, taking factors like these into account.”

Bruno Sobral, Executive and Scientific Director of VBI, remarked: “Transdisciplinary science, which is the foundation of the way we do research at VBI, requires a special type of collaborative framework at the very outset of a project. The highly detailed social-network models that underpin this international research project arise from transdisciplinary science that removes disciplinary boundaries and promotes innovation. The impact of this approach to science is highlighted by the success of this research undertaking which benefits from a very clear interface between diverse experts in high-performance computing, disease modeling and public health practice.”

While the three different models used in the study show that timely intervention significantly impedes the spread of influenza through a population, the authors caution against over-interpretation of the modeling results. The researchers emphasize that the models are tools that provide guidance rather than being fully predictive. In the case of a future outbreak of pandemic influenza, capabilities such as real-time surveillance and other analyses will hopefully be available for the public health community and policy makers.

“These models, which are built from the best available data and with the best tools, contribute greatly to our understanding of how a pandemic could spread and what measures might protect the public’s health,” said Jeremy M. Berg, Ph.D., director of NIH’s National Institute of General Medical Sciences, which supports the MIDAS program. “But they are not our only resource—field work and experimental studies remain critical and will enhance the quality and reliability of these and other models.”

Susan Bland | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>