Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wizkid makes its debut at The Museum of Modern Art

19.02.2008
There's a kid waiting to meet you at The Museum of Modern Art in New York. Like any kid, it will amuse you, it will ask you lots of questions, and it might even bother you a little bit. But unlike most kids, it doesn’t walk or talk, and it pays perfect attention. Meet Wizkid: part computer, part robot, a Swiss kid who's changing our concept of how people interact with machines.

Wizkid is part of MoMA's Design and the Elastic Mind exhibit, running from February 24 to May 12, 2008. This unusual device is the result of a collaboration between an engineer, Fréderic Kaplan and an industrial designer, Martino d’Esposito.

Wizkid looks like a computer with a neck. But there the similarities with the familiar personal computer end. Wizkid isn't static. The screen on the mobile neck moves about like a head, and it's trained to hone in on human faces. Once it sees you, Wizkid focuses on you and follows your movement. Unlike a computer, which requires you to stop what you're doing and adapt your behavior and social interactions in order to use it, Wizkid blends into human space.

There’s no mouse and no keyboard. You don’t touch anything. There’s no language getting in the way. On Wizkid’s screen you see yourself surrounded by a “halo” of interactive elements that you can simply select by waving your hands. If you move away or to one side, Wizkid adapts itself to you, not the other way around. If you’re with a friend, Wizkid finds and tracks both of you and tries to figure out your relationship, expressing surprise, confusion or enjoyment when it gets your response.

Wizkid’s inventors see their creation as playing a new and important role in the transitional world we currently inhabit. “Wizkid gets us AFK – away from keyboard – and back into the physical world, ” explains Kaplan. “Unlike a personal computer, it doesn’t force the human to accommodate, and it’s fundamentally social and multi-user.”

Kaplan isn’t suggesting that Wizkid will replace the language-driven interfaces of ordinary computers. But he does believe that there are many areas in which Wizkid’s augmented reality could ease and enhance the human experience. Hold up your favorite CD cover and Wizkid will start the stereo. Play novel kinds of games. Browse products in a store or information in a museum exhibit without having to touch a screen. In the office, Wizkid adds a new dimension to conferences, paying attention to who is speaking (and who is not).

Unlike a real kid, whose learning curve can be frustratingly hard to influence, Wizkid learns as much as you want it to about you and your world, and interacts with you at a level that you define. Creature of habit? Wizkid will keep track of your preferences, and anticipate some light jazz when you walk in the door. Want to use this device simply as a tool? Adjust a slider on its side and Wizkid will follow you without making any suggestions.

At the MoMA exhibit, Wizkid will interact with visitors; ask (nonverbal) questions about relationships; and use its novel "body language" to express interest, confusion, and pleasure. If you go out of range, and then come back, Wizkid might just remember you and try to continue the conversation. It’s different and slightly unsettling at first, because we’re so used to adapting ourselves to the restricted physical scope of computers and to interacting with them through language and touch. So stretch your mind, and let this new kid on the block surprise you!

Mary Parlange | alfa
Further information:
http://www.wizkid.info
http://www.wizkid.info/file
http://www.epfl.ch

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>