Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purging nano’s innovation bottleneck

10.01.2008
There is plenty of innovation in micro- and nanotechnologies, but bringing new devices to market is often prohibitively expensive. Many micro devices have small production volumes, while design, packaging and testing are costly. Now European researchers are breaking down the barriers by developing design methodologies that focus on manufacturing, packaging and testing.

In laboratories dotted across the continent, dedicated and ingenious researchers work feverishly for years, or even careers, to increase our understanding of science at the small scale. Along the way, they develop new, innovative devices to detect pressure, acceleration, temperature or direction – and that’s just the beginning.

Researchers now explore tiny devices that eject a dose of medicine at pre-determined intervals. They create entire, micron-sized laboratories or computer systems on a chip. They are discovering just how much room there is at the small scale, as physicist Richard Feynman famously predicted almost 49 years ago.

Ugly, but it works

But innovation at the sharp end lags behind scientific advances. Often the devices only exist in the laboratory as a demonstration. These prototype lab demonstrations look ugly, but often work and they prove functionality at the nano- or micro-scale. They also often determine whether the invention will ever see the light of day.

“For certain types of device, targeting very large volumes in sectors like the automotive and, more recently, the computer gaming industry, there is a promising future,” reveals Patric Salomon, a partner with the PATENT-DfMM network of excellence (NoE). “But for many others, the lab is the only place where these devices are ever really used.”

The reason? Up to 80 percent of the unit cost for micro- and nano-devices is in the packaging and testing phase, and the unit cost must often come in under a euro. “Many innovations are just too expensive to commercialise,” notes Salomon.

But not, perhaps, for much longer. The PATENT-DfMM network was set up to find a way to cut the cost of packaging, testing and manufacturing micro and nano-devices. To do it, the 22-strong consortium had €6.2 million funding from the EU.

“We had a lot of control over how we assessed projects for funding within the network,” says Salomon. “As a result, we were able to get quite a significant impact.” In the end, the NoE supported over 60 small-scale projects.

These looked at ways to simplify the “Design for Micro Manufacture” process. In essence, researchers learn about manufacturing constraints before starting a design and they take these into account during the concept phase, to optimise units for manufacturing processes. This drives down costs and the time to market.

The network funded research into ways of re-using one design, or its building blocks, for a different type of product. It also studied more efficient ways to test for robustness and perform quality control. Already, these projects have had an important impact, though Salomon admits that they are difficult to quantify.

The end of the beginning

But that’s just the beginning. PATENT-DfMM also conceived a series of service clusters, groups of specialists in particular areas of micro- and nanotechnology, offering services in design for manufacture, testing and reliability.

“These target specifically SMEs and can provide help for companies seeking to commercialise a nano- or microtechnology,” notes Salomon. So far, PATENT-DfMM has set up two; one specialised in miniaturised health-monitoring systems (HUMS), while another focuses on reliability (EUMIREL).

In all, it offers hope of a commercial life for the thousands of lost innovations gathering dust in labs across the continent, and more importantly, to make sure future inventions are “designed for manufacture” from their initial development phase.

Christian Nielsen | ICT Results
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89405

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>