Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purging nano’s innovation bottleneck

10.01.2008
There is plenty of innovation in micro- and nanotechnologies, but bringing new devices to market is often prohibitively expensive. Many micro devices have small production volumes, while design, packaging and testing are costly. Now European researchers are breaking down the barriers by developing design methodologies that focus on manufacturing, packaging and testing.

In laboratories dotted across the continent, dedicated and ingenious researchers work feverishly for years, or even careers, to increase our understanding of science at the small scale. Along the way, they develop new, innovative devices to detect pressure, acceleration, temperature or direction – and that’s just the beginning.

Researchers now explore tiny devices that eject a dose of medicine at pre-determined intervals. They create entire, micron-sized laboratories or computer systems on a chip. They are discovering just how much room there is at the small scale, as physicist Richard Feynman famously predicted almost 49 years ago.

Ugly, but it works

But innovation at the sharp end lags behind scientific advances. Often the devices only exist in the laboratory as a demonstration. These prototype lab demonstrations look ugly, but often work and they prove functionality at the nano- or micro-scale. They also often determine whether the invention will ever see the light of day.

“For certain types of device, targeting very large volumes in sectors like the automotive and, more recently, the computer gaming industry, there is a promising future,” reveals Patric Salomon, a partner with the PATENT-DfMM network of excellence (NoE). “But for many others, the lab is the only place where these devices are ever really used.”

The reason? Up to 80 percent of the unit cost for micro- and nano-devices is in the packaging and testing phase, and the unit cost must often come in under a euro. “Many innovations are just too expensive to commercialise,” notes Salomon.

But not, perhaps, for much longer. The PATENT-DfMM network was set up to find a way to cut the cost of packaging, testing and manufacturing micro and nano-devices. To do it, the 22-strong consortium had €6.2 million funding from the EU.

“We had a lot of control over how we assessed projects for funding within the network,” says Salomon. “As a result, we were able to get quite a significant impact.” In the end, the NoE supported over 60 small-scale projects.

These looked at ways to simplify the “Design for Micro Manufacture” process. In essence, researchers learn about manufacturing constraints before starting a design and they take these into account during the concept phase, to optimise units for manufacturing processes. This drives down costs and the time to market.

The network funded research into ways of re-using one design, or its building blocks, for a different type of product. It also studied more efficient ways to test for robustness and perform quality control. Already, these projects have had an important impact, though Salomon admits that they are difficult to quantify.

The end of the beginning

But that’s just the beginning. PATENT-DfMM also conceived a series of service clusters, groups of specialists in particular areas of micro- and nanotechnology, offering services in design for manufacture, testing and reliability.

“These target specifically SMEs and can provide help for companies seeking to commercialise a nano- or microtechnology,” notes Salomon. So far, PATENT-DfMM has set up two; one specialised in miniaturised health-monitoring systems (HUMS), while another focuses on reliability (EUMIREL).

In all, it offers hope of a commercial life for the thousands of lost innovations gathering dust in labs across the continent, and more importantly, to make sure future inventions are “designed for manufacture” from their initial development phase.

Christian Nielsen | ICT Results
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89405

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>