Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooking up new mems: a taste of microscopic machines to come

21.12.2007
Microelectromechanical systems (MEMS) are tiny components etched from silicon. Production is extremely complex, sometimes with hundreds of steps, each with dozens of parameters. One European project has developed software that can test, simulate, track and share new manufacturing processes. It could slash development times and pave the way for innovative MEMS designs.

If you could shrink yourself smaller than a dust mite and explore the innards of a modern car you would discover some amazing microscopic machines. Carefully etched out of silicon wafers are microscale accelerometers to trigger airbags, gyroscopes to detect and correct dangerous yaw and pressure sensors to monitor tyre inflation.

The automotive industry is one of the biggest consumers of microelectromechanical systems (MEMS). These tiny components marry the worlds of electronics and mechanics. Using the same manufacturing principles employed to produce microchips, it is possible to etch silicon into electrical devices with moving parts.

MEMS manufacturing is extremely complex, involving sometimes hundreds of different steps. Each step may be controlled by a dozen or more parameters, including temperatures, pressures and chemical compositions.

“Trying to come up with a manufacturing recipe for a new MEMS component is so complicated it would be impossible without ICT support. You just couldn't keep up with all the variables and their impact on the final outcome,” explains Dirk Ortloff, co-originator of the EU-funded Promenade project.

A difference of five degrees Celsius may have little effect on the production of silicon chips because they only depend on the electrical properties of the material. MEMS, however, also have mechanical properties. A small variation in any manufacturing parameter at any step could alter the performance of the final product.

Promenade brings together some of the foremost experts in process development for MEMS devices. The project consisted of seven partners, including industry, research institutes, universities and software vendors, from Belgium, the UK, the Netherlands, Germany and Austria.

Virtual manufacturing
The aim of the project was to build software that could support the design of MEMS manufacturing sequences.

Working closely with Bosch and the centre IMEC research centre as potential end users, the research partners focused on three modules. The design module lets manufacturers input and edit the sequence of manufacturing steps using a graphical interface. The module can really cut down development time by performing consistency checks on the assembled process flow. These checks help to avoid common errors like wrong or forgotten pre- or post-processing.

Each step and its related parameters and other data are stored in a database in a standardised format. Ortloff says this is an important breakthrough for the MEMS industry. “Currently it is not possible to transfer complex MEMS recipes together with their support data electronically. By making this information available in a standard format it will be much quicker for manufacturers to transfer the information and to set up fabrication in different units.”

The second module allows designers to simulate the manufacturing sequence. This module is based on a commercially available simulation package by Silvaco, one of the project partners. Development work within the project has adapted Silvaco's software to account for the physical structure of MEMS. Reliable simulations are essential for MEMS designs so that as many problems can be ironed out prior to expensive experimental and prototype production.

The final module developed by the Promenade consortium is a tracking component that documents the entire manufacturing process – every parameter of every step, along with images and scans of the device.

“Capturing experimental data is routine in the industry,” says Ortloff, “but there is no system that captures all of it, then organises the data in a way that finds the relations between the data. We help to turn all the data into knowledge and, again, speed up the development process because you don't need to gather all the knowledge again every time you design a new MEMS.”

Etching out new markets
The project’s results have been welcomed by MEMS manufacturers and several commercial products will be made available. Silvaco will offer a tool for full three-dimensional process flow simulation analysis, incorporating models for MEMS processing.

What's more, Promenade team members at Cavendish Kinetics and the University of Siegen have started a new spin-off company, called Process Relations Gmbh. The start-up has already completed its first round of funding and is approaching a second round as it prepares the worldwide launch of Promenade's commercial successor, named XperiDesk.

XperiDesk will provide the first-ever process development and execution system (PDES) in the area of microelectronics and MEMS, and later also for other high-tech industries like solar and bio-medical equipment manufacturers. Ortloff estimates the market for PDE-systems at €100 million per year.

“XperiDesk will really speed up process development and the transfer of the processes, perhaps by two or more weeks for any one transfer,” says Ortloff. “It also will allow novel devices and ideas to be tested and taken into development, whereas previously they would have been cancelled because no one could work out how to make them. For high-tech companies with their fast product lifecycles, this can be a real competitive advantage.”

Who knows what magnificent machines you might soon discover exploring the insides of that automobile?

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89367

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>