Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooking up new mems: a taste of microscopic machines to come

21.12.2007
Microelectromechanical systems (MEMS) are tiny components etched from silicon. Production is extremely complex, sometimes with hundreds of steps, each with dozens of parameters. One European project has developed software that can test, simulate, track and share new manufacturing processes. It could slash development times and pave the way for innovative MEMS designs.

If you could shrink yourself smaller than a dust mite and explore the innards of a modern car you would discover some amazing microscopic machines. Carefully etched out of silicon wafers are microscale accelerometers to trigger airbags, gyroscopes to detect and correct dangerous yaw and pressure sensors to monitor tyre inflation.

The automotive industry is one of the biggest consumers of microelectromechanical systems (MEMS). These tiny components marry the worlds of electronics and mechanics. Using the same manufacturing principles employed to produce microchips, it is possible to etch silicon into electrical devices with moving parts.

MEMS manufacturing is extremely complex, involving sometimes hundreds of different steps. Each step may be controlled by a dozen or more parameters, including temperatures, pressures and chemical compositions.

“Trying to come up with a manufacturing recipe for a new MEMS component is so complicated it would be impossible without ICT support. You just couldn't keep up with all the variables and their impact on the final outcome,” explains Dirk Ortloff, co-originator of the EU-funded Promenade project.

A difference of five degrees Celsius may have little effect on the production of silicon chips because they only depend on the electrical properties of the material. MEMS, however, also have mechanical properties. A small variation in any manufacturing parameter at any step could alter the performance of the final product.

Promenade brings together some of the foremost experts in process development for MEMS devices. The project consisted of seven partners, including industry, research institutes, universities and software vendors, from Belgium, the UK, the Netherlands, Germany and Austria.

Virtual manufacturing
The aim of the project was to build software that could support the design of MEMS manufacturing sequences.

Working closely with Bosch and the centre IMEC research centre as potential end users, the research partners focused on three modules. The design module lets manufacturers input and edit the sequence of manufacturing steps using a graphical interface. The module can really cut down development time by performing consistency checks on the assembled process flow. These checks help to avoid common errors like wrong or forgotten pre- or post-processing.

Each step and its related parameters and other data are stored in a database in a standardised format. Ortloff says this is an important breakthrough for the MEMS industry. “Currently it is not possible to transfer complex MEMS recipes together with their support data electronically. By making this information available in a standard format it will be much quicker for manufacturers to transfer the information and to set up fabrication in different units.”

The second module allows designers to simulate the manufacturing sequence. This module is based on a commercially available simulation package by Silvaco, one of the project partners. Development work within the project has adapted Silvaco's software to account for the physical structure of MEMS. Reliable simulations are essential for MEMS designs so that as many problems can be ironed out prior to expensive experimental and prototype production.

The final module developed by the Promenade consortium is a tracking component that documents the entire manufacturing process – every parameter of every step, along with images and scans of the device.

“Capturing experimental data is routine in the industry,” says Ortloff, “but there is no system that captures all of it, then organises the data in a way that finds the relations between the data. We help to turn all the data into knowledge and, again, speed up the development process because you don't need to gather all the knowledge again every time you design a new MEMS.”

Etching out new markets
The project’s results have been welcomed by MEMS manufacturers and several commercial products will be made available. Silvaco will offer a tool for full three-dimensional process flow simulation analysis, incorporating models for MEMS processing.

What's more, Promenade team members at Cavendish Kinetics and the University of Siegen have started a new spin-off company, called Process Relations Gmbh. The start-up has already completed its first round of funding and is approaching a second round as it prepares the worldwide launch of Promenade's commercial successor, named XperiDesk.

XperiDesk will provide the first-ever process development and execution system (PDES) in the area of microelectronics and MEMS, and later also for other high-tech industries like solar and bio-medical equipment manufacturers. Ortloff estimates the market for PDE-systems at €100 million per year.

“XperiDesk will really speed up process development and the transfer of the processes, perhaps by two or more weeks for any one transfer,” says Ortloff. “It also will allow novel devices and ideas to be tested and taken into development, whereas previously they would have been cancelled because no one could work out how to make them. For high-tech companies with their fast product lifecycles, this can be a real competitive advantage.”

Who knows what magnificent machines you might soon discover exploring the insides of that automobile?

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89367

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>