Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooking up new mems: a taste of microscopic machines to come

21.12.2007
Microelectromechanical systems (MEMS) are tiny components etched from silicon. Production is extremely complex, sometimes with hundreds of steps, each with dozens of parameters. One European project has developed software that can test, simulate, track and share new manufacturing processes. It could slash development times and pave the way for innovative MEMS designs.

If you could shrink yourself smaller than a dust mite and explore the innards of a modern car you would discover some amazing microscopic machines. Carefully etched out of silicon wafers are microscale accelerometers to trigger airbags, gyroscopes to detect and correct dangerous yaw and pressure sensors to monitor tyre inflation.

The automotive industry is one of the biggest consumers of microelectromechanical systems (MEMS). These tiny components marry the worlds of electronics and mechanics. Using the same manufacturing principles employed to produce microchips, it is possible to etch silicon into electrical devices with moving parts.

MEMS manufacturing is extremely complex, involving sometimes hundreds of different steps. Each step may be controlled by a dozen or more parameters, including temperatures, pressures and chemical compositions.

“Trying to come up with a manufacturing recipe for a new MEMS component is so complicated it would be impossible without ICT support. You just couldn't keep up with all the variables and their impact on the final outcome,” explains Dirk Ortloff, co-originator of the EU-funded Promenade project.

A difference of five degrees Celsius may have little effect on the production of silicon chips because they only depend on the electrical properties of the material. MEMS, however, also have mechanical properties. A small variation in any manufacturing parameter at any step could alter the performance of the final product.

Promenade brings together some of the foremost experts in process development for MEMS devices. The project consisted of seven partners, including industry, research institutes, universities and software vendors, from Belgium, the UK, the Netherlands, Germany and Austria.

Virtual manufacturing
The aim of the project was to build software that could support the design of MEMS manufacturing sequences.

Working closely with Bosch and the centre IMEC research centre as potential end users, the research partners focused on three modules. The design module lets manufacturers input and edit the sequence of manufacturing steps using a graphical interface. The module can really cut down development time by performing consistency checks on the assembled process flow. These checks help to avoid common errors like wrong or forgotten pre- or post-processing.

Each step and its related parameters and other data are stored in a database in a standardised format. Ortloff says this is an important breakthrough for the MEMS industry. “Currently it is not possible to transfer complex MEMS recipes together with their support data electronically. By making this information available in a standard format it will be much quicker for manufacturers to transfer the information and to set up fabrication in different units.”

The second module allows designers to simulate the manufacturing sequence. This module is based on a commercially available simulation package by Silvaco, one of the project partners. Development work within the project has adapted Silvaco's software to account for the physical structure of MEMS. Reliable simulations are essential for MEMS designs so that as many problems can be ironed out prior to expensive experimental and prototype production.

The final module developed by the Promenade consortium is a tracking component that documents the entire manufacturing process – every parameter of every step, along with images and scans of the device.

“Capturing experimental data is routine in the industry,” says Ortloff, “but there is no system that captures all of it, then organises the data in a way that finds the relations between the data. We help to turn all the data into knowledge and, again, speed up the development process because you don't need to gather all the knowledge again every time you design a new MEMS.”

Etching out new markets
The project’s results have been welcomed by MEMS manufacturers and several commercial products will be made available. Silvaco will offer a tool for full three-dimensional process flow simulation analysis, incorporating models for MEMS processing.

What's more, Promenade team members at Cavendish Kinetics and the University of Siegen have started a new spin-off company, called Process Relations Gmbh. The start-up has already completed its first round of funding and is approaching a second round as it prepares the worldwide launch of Promenade's commercial successor, named XperiDesk.

XperiDesk will provide the first-ever process development and execution system (PDES) in the area of microelectronics and MEMS, and later also for other high-tech industries like solar and bio-medical equipment manufacturers. Ortloff estimates the market for PDE-systems at €100 million per year.

“XperiDesk will really speed up process development and the transfer of the processes, perhaps by two or more weeks for any one transfer,” says Ortloff. “It also will allow novel devices and ideas to be tested and taken into development, whereas previously they would have been cancelled because no one could work out how to make them. For high-tech companies with their fast product lifecycles, this can be a real competitive advantage.”

Who knows what magnificent machines you might soon discover exploring the insides of that automobile?

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89367

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>