Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein fingerprinting made easy by Croatian scientists

13.12.2007
Combining some traditional experimental methods of molecular biology with computational methods of artificial intelligence, a group of researchers from Ruder Boškovic Instititute and Faculty of Natural Sciences and Mathematics from Zagreb, Croatia, demonstrated a novel approach for producing ‘protein fingerprints’ of diverse tissues. This result could lead to the development of new convenient methods in medical diagnostics.

Being directly responsible for a great majority of processes in living cells, proteins are the most important class of biological molecules. They are literally ‘molecular machines’ which facilitate the import of nutrients into the cell and expulsion of waste products from it, production of energy and transportation of material within the cell, as well as cellular respiration and mechanical motion. Due to their immense importance, proteins are among the most vigorously studied topics in biology today.

Over half a million different protein species have been identified in humans, each of them related to particular types of human cells. Different tissues, such as muscles, bones, nerves or skin, are distinguished by the unique ‘protein fingerprint’ – the specific relative abundance of different proteins contained in their cells. Moreover, pathological changes in any type of tissue necessarily have an impact on the tissue’s protein composition, and therefore protein fingerprinting can be used for early diagnostics and identification of various diseases such as tumors or infections.

Unfortunately, producing a good quality protein fingerprint has until now been a complicated, time consuming and expensive enterprise. However, based on their research of tumors conducted on horseradish plant tissue, the Croatian team proposed a novel approach to bypass this obstacle. Applying computational methods of artificial intelligence, they ‘trained’ a computer to precisely extract the most relevant information on the protein fingerprint from rather ‘fuzzy’ experimental data obtained by 1D protein electrophoresis, a well known, simple, quick and cheap experimental method of molecular biology. Their result hence opens up the possibility for development of a cheap, convenient and reliable method for producing good quality protein fingerprints.

Duje Bonacci | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/abstract/117352689/ABSTRACT

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>