Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise orbit determination for Jason-1 satellite using on-board GPS data with centimeter-level accuracy

04.02.2009
As the on-board GPS has become one of the key POD approaches for LEO satellites and will be widely placed on the future LEO mission to support their orbit accuracy requirements, Shanghai Astronomical Observatory has developed the SHOEDEE-III procedure which may support zero-difference dynamic orbit determination as well as single-difference dynamic orbit determination using on-board GPS data by fixing GPS ephemeris and clock bias.

This would give support to scientific missions equipped with GPS receivers, and make its due contribution to the future oceanographic, climatic and remote sensing missions of our own country.

This study is reported in issue 54 (Jan. 2009) of the Chinese Science Bulletin.

In order to test the POD accuracy of SHORDE-III, Peng and Wu processed two cycles (Dec. 19, 2002 to Jan. 7, 2003) of the Jason-1 on-board GPS data, and assessed the orbits by comparing POE, orbit overlaps and independent SLR validations. These results show that: 1) there is no obvious systematic bias between POE and orbit solutions computed using the SHORDE-III procedure, the 3-D orbit difference RMS is about 5.71 cm, and the radial orbit RMS accuracy is about 1.71 cm; 2) the 3-D RMS of orbit overlaps is about 4.89 cm, and the radial RMS accuracy is about 1.45 cm; 3) no significant bias has been found for the SLR residuals. The 20-day statistic bias of the SLR residual with the 15-degree elevation cutoff is 0.07}3.69 cm, and the statistic bias of the 60-degree elevation cutoff is 0.49}1.61 cm.

The main conclusion reported by the authors is that the models, strategy, and procedure described in this study are viable for use in real-world situations, and provide highly accurate GPS-based solutions.

This study is supported by the National Natural Science Foundation of China (Grant No. 40274006), the National High-Tech R&D Program (863 Program) of China (2006AA12A107), and the Science & Technology Commission of Shanghai Municipality (06DZ22101).

Reference: Peng DongJu-WU Bin. Precise orbit determination for Jason-1 satellite using on-board GPS data with cm-level accuracy. Chinese Science BulletinC2009C54(2): 196-202

Dongju Peng | EurekAlert!
Further information:
http://www.shao.ac.cn

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>