Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Validation Program Tests Next-Generation Internet Products

25.05.2009
NIST establishing a testing program to assure that the U.S. government purchases new computers and networking products that work properly on the next-generation Internet traffic system—known as IPv6—while meeting standards for federal government use.

The National Institute of Standards and Technology (NIST) is establishing a testing program to assure that the U.S. government purchases new computers and networking products that work properly on the next-generation Internet traffic system while meeting standards for federal government use.

Addressing the U.S. government standards profile known as USGv6, the testing program is heralded by a new publication, a preliminary set of tests and an upcoming meeting to discuss its management.

Every device that is connected to the Internet, from a supercomputer to a smart phone, has a unique numerical ID known as an Internet Protocol (IP) address. However, the number of computers and mobile devices with IP addresses is closing in on the nearly 5 billion address limit of the prevailing Internet Protocol, known as IP version 4 (IPv4). To meet the challenge, the computer industry is gradually moving to IP version 6 (IPv6), which is believed to have an inexhaustible address space. IPv6 can accommodate 2128, or more than 340 undecillion (a number followed by 36 zeros), sites. To imagine this, picture each known star in our universe with trillions of IP addresses.

The USGv6 profile also endeavors to “raise the bar” on the security capabilities of IPv6 devices connected to the Internet.

In its first step to prepare for the move to this new protocol, NIST in 2008 released a standards profile for U.S. government implementation of IPv6, which is now known as USGv6. The document, NIST Special Publication (NIST SP) 500-267, assists federal agencies in procuring USGv6 networking products.

NIST scientists, in concert with industry partners, have been developing testing procedures to assure that computers, routers and other equipment conform to, and are interoperable with, the IPv6 capabilities specified in the profile.

To help create the test infrastructure necessary to support broad USGv6 initiatives, NIST has taken three major steps: Publishing NIST SP 500-273, IPv6 Test Methods: General Description and Validation, a document describing the USGv6 Test Program procedures for validation and accreditation of test methods; developing a preliminary set of abstract test suites, and scheduling a meeting on May 27, 2009, to discuss program implementation issues.

“This testing regime is important,” explains NIST computer scientist Stephen Nightingale, “to ensure that future USGv6 procurements are both sufficiently capable and interoperable.”

More information on the USGv6 publications and testing program is available at www.antd.nist.gov/usgv6/testing.html. All comments should be sent electronically to sp500-273-comments@antd.nist.gov.

Evelyn Brown | Newswise Science News
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>