Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU researchers use new video gaming technology to detect illness, prevent falls in older adults

07.09.2011
Many older adults lose their independence as their health declines and they are compelled to move into assisted care facilities.

Researchers at the University of Missouri and TigerPlace, an independent living community, have been using motion-sensing technology to monitor changes in residents' health for several years. Now, researchers have found that two devices commonly used for video gaming and security systems are effective in detecting the early onset of illness and fall risk in seniors.

Marjorie Skubic, professor of electrical and computer engineering in the MU College of Engineering, is working with doctoral student, Erik Stone, to use the Microsoft Kinect, a new motion-sensing camera generally used as a video gaming device, to monitor behavior and routine changes in patients at TigerPlace. These changes can indicate increased risk for falls or early symptoms of illnesses.

"The Kinect uses infrared light to create a depth image that produces data in the form of a silhouette, instead of a video or photograph," said Stone. "This alleviates many seniors' concerns about privacy when traditional web camera-based monitoring systems are used."

Another doctoral student, Liang Liu, is collaborating with Mihail Popescu, assistant professor in the College of Engineering and the Department of Health Management and Informatics in the MU School of Medicine, to develop a fall detection system that uses Doppler radar to recognize changes in walking, bending and other movements that may indicate a heightened risk for falls. Different human body parts create unique images, or "signatures," on Doppler radar. Since falls combine a series of body part motions, the radar system can recognize a fall based on its distinct "signature."

"Falls are especially dangerous for older adults and if they don't get help immediately, the chances of serious injury or death are increased," said Liu. "If emergency personnel are informed about a fall right away, it can significantly improve the outcome for the injured patient."

Both motion-sensing systems provide automated data that alert care providers when patients need assistance or a medical intervention. The systems currently are used for monitoring residents at TigerPlace in Columbia. Skubic says the system allows residents to maintain their independence and take comfort in knowing that illnesses or falls may be detected early.

Stone's study, "Evaluation of an Inexpensive Depth Camera for Passive In-Home Fall Risk Assessment," won the best paper award at the Pervasive Health Conference, in Dublin, Ireland in May. Liu's study, "Automatic Fall Detection Based on Doppler Radar Motion," received the best poster award at the conference. Liu's paper was a collaboration with GE Global Research and co-authored by Tarik Yardibi and Paul Cuddihy. TigerPlace is a joint project of the Sinclair School of Nursing and AmErikare, a long-term care company. For more information about MU's interdisciplinary eldercare technology research, visit http://eldertech.missouri.edu or www.agingmo.com.

The research is part of Mizzou Advantage, the five unique areas that set MU apart from other universities. The project contributes to the "Managing Innovation: Navigating Disruptive and Transformational Technologies" initiative that will touch on virtually every part of the university to explore areas in which existing technologies are changing rapidly.

Samantha Craven | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Information Technology:

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>