Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimising the outcome of disasters by simulating the effects of different actions

31.05.2012
The CRISMA project aims to improve Europeans’ safety and security

The European CRISMA project prepares for disasters by developing a decision-support tool to help the authorities, responders, communities and private parties to prioritise the most important measures for saving lives and mitigating the effects of the crisis.

The CRISMA project, co-ordinated by VTT Technical Research Centre of Finland, is developing a planning tool for crises with immediate, extensive, and often irreversible consequences to the population and society. Crises of this type include natural disasters, toxic emissions, forest fires, and aircraft accidents.

The purpose of the CRISMA project is to improve the safety of Europeans by providing information on disasters and the effects of the various decisions and measures applied to address the crisis. The goal is to use modelling and simulation technologies for evaluating the effects of the measures taken on hypothetical scenarios. Research helps decision-makers to identify the most efficient means to prevent losses of life and damage to property.

The project develops solutions to complex crisis scenarios, which can result in massive damage and that require co-operation among various authorities and private parties, including trans-boundary cooperation. The project helps to provide crisis-management decision-makers with information on how extensive disasters should be prepared for, what measures are available during a crisis, and what their effects are.

An integrated modelling system is being designed in the project to simulate both the most likely of crisis situations and more remote scenarios, the required measures, and their effects. Domino and multi-risk effects are also to be taken into account: the integrated modelling system will give opportunities to assess impacts of natural disasters on chemical, nuclear and other industrial activities, critical infrastructures, etc. The system will be used for both short and long term planning, and training purposes.

The integrated modelling system will support comparison among alternatives and evaluation of possible effects of actions and investments, e.g.: Is the planned location for the protective structure correct? What evacuation options should be considered? Should certain areas be zoned as residential or industrial in the land-use plan – or is it best not to build there at all?

For example, the progress of an unforeseen flood can be simulated during the crisis through coupling of historical information with real-time field information. This provides a basis for decisions regarding e.g. evacuation, where the rescue resources should be targeted, and where additional flood protective structures should be constructed.

The CRISMA system helps to make complex and ambiguous issues more concrete to those that are responsible for making difficult decisions. The project helps us to understand how various accidents and crisis scenarios affect the people, society, infrastructure, the buildings, services, and the economy.

It will also be possible to use the simulation tools in planning collaboration among organisations or geographical areas. The simulation portal can be used to synthesise information provided by different parties and to create new information, including with graphical presentation. Currently, the relevant parties’ individual systems are often practically standalone, with almost no co-operation.

The CRISMA project is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. The CRISMA project’s total budget is 14.4 million euros, of which EU funding accounts for 10.1 million euros. The project ends in August 2015.

In addition to VTT, the project’s research partners are Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (Germany), AMRA Analysis and Monitoring of Environmental Risk (Italy), AIT Austrian Institute of Technology GmbH (Austria), the Association for the Development of Industrial Aerodynamics (Portugal), Tallinn University of Technology (Estonia), and the Finnish Meteorological Institute (Finland).

The end user’s perspective in the consortium is provided by the Emergency Services College (Finland), Deutsches Rotes Kreuz (Germany), Magen David Adom (Israel), the Public Safety Communication Europe Forum (Belgium).

Industrial representatives in the project are NICE Systems Ltd (Israel), EADS Deutschland GmbH – Cassidian (Germany), Insta DefSec (Finland), Spacebel S.A. (Belgium), Cismet GmbH (Germany), and ARTELIA Eau & Environnement (France).

For further information please contact:
VTT Technical Research Centre of Finland
Senior Scientist Anna-Mari Heikkilä
tel. +358 20 722 3490
e-mail address crisma.coordinator@vtt.fi
Project website: www.crismaproject.eu
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358 20 722 6747
olli.ernvall@vtt.fi
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Anna-Mari Heikkilä | VTT Info
Further information:
http://www.vtt.fi

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>