Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimising the outcome of disasters by simulating the effects of different actions

31.05.2012
The CRISMA project aims to improve Europeans’ safety and security

The European CRISMA project prepares for disasters by developing a decision-support tool to help the authorities, responders, communities and private parties to prioritise the most important measures for saving lives and mitigating the effects of the crisis.

The CRISMA project, co-ordinated by VTT Technical Research Centre of Finland, is developing a planning tool for crises with immediate, extensive, and often irreversible consequences to the population and society. Crises of this type include natural disasters, toxic emissions, forest fires, and aircraft accidents.

The purpose of the CRISMA project is to improve the safety of Europeans by providing information on disasters and the effects of the various decisions and measures applied to address the crisis. The goal is to use modelling and simulation technologies for evaluating the effects of the measures taken on hypothetical scenarios. Research helps decision-makers to identify the most efficient means to prevent losses of life and damage to property.

The project develops solutions to complex crisis scenarios, which can result in massive damage and that require co-operation among various authorities and private parties, including trans-boundary cooperation. The project helps to provide crisis-management decision-makers with information on how extensive disasters should be prepared for, what measures are available during a crisis, and what their effects are.

An integrated modelling system is being designed in the project to simulate both the most likely of crisis situations and more remote scenarios, the required measures, and their effects. Domino and multi-risk effects are also to be taken into account: the integrated modelling system will give opportunities to assess impacts of natural disasters on chemical, nuclear and other industrial activities, critical infrastructures, etc. The system will be used for both short and long term planning, and training purposes.

The integrated modelling system will support comparison among alternatives and evaluation of possible effects of actions and investments, e.g.: Is the planned location for the protective structure correct? What evacuation options should be considered? Should certain areas be zoned as residential or industrial in the land-use plan – or is it best not to build there at all?

For example, the progress of an unforeseen flood can be simulated during the crisis through coupling of historical information with real-time field information. This provides a basis for decisions regarding e.g. evacuation, where the rescue resources should be targeted, and where additional flood protective structures should be constructed.

The CRISMA system helps to make complex and ambiguous issues more concrete to those that are responsible for making difficult decisions. The project helps us to understand how various accidents and crisis scenarios affect the people, society, infrastructure, the buildings, services, and the economy.

It will also be possible to use the simulation tools in planning collaboration among organisations or geographical areas. The simulation portal can be used to synthesise information provided by different parties and to create new information, including with graphical presentation. Currently, the relevant parties’ individual systems are often practically standalone, with almost no co-operation.

The CRISMA project is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. The CRISMA project’s total budget is 14.4 million euros, of which EU funding accounts for 10.1 million euros. The project ends in August 2015.

In addition to VTT, the project’s research partners are Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (Germany), AMRA Analysis and Monitoring of Environmental Risk (Italy), AIT Austrian Institute of Technology GmbH (Austria), the Association for the Development of Industrial Aerodynamics (Portugal), Tallinn University of Technology (Estonia), and the Finnish Meteorological Institute (Finland).

The end user’s perspective in the consortium is provided by the Emergency Services College (Finland), Deutsches Rotes Kreuz (Germany), Magen David Adom (Israel), the Public Safety Communication Europe Forum (Belgium).

Industrial representatives in the project are NICE Systems Ltd (Israel), EADS Deutschland GmbH – Cassidian (Germany), Insta DefSec (Finland), Spacebel S.A. (Belgium), Cismet GmbH (Germany), and ARTELIA Eau & Environnement (France).

For further information please contact:
VTT Technical Research Centre of Finland
Senior Scientist Anna-Mari Heikkilä
tel. +358 20 722 3490
e-mail address crisma.coordinator@vtt.fi
Project website: www.crismaproject.eu
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358 20 722 6747
olli.ernvall@vtt.fi
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Anna-Mari Heikkilä | VTT Info
Further information:
http://www.vtt.fi

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>