Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimising the outcome of disasters by simulating the effects of different actions

31.05.2012
The CRISMA project aims to improve Europeans’ safety and security

The European CRISMA project prepares for disasters by developing a decision-support tool to help the authorities, responders, communities and private parties to prioritise the most important measures for saving lives and mitigating the effects of the crisis.

The CRISMA project, co-ordinated by VTT Technical Research Centre of Finland, is developing a planning tool for crises with immediate, extensive, and often irreversible consequences to the population and society. Crises of this type include natural disasters, toxic emissions, forest fires, and aircraft accidents.

The purpose of the CRISMA project is to improve the safety of Europeans by providing information on disasters and the effects of the various decisions and measures applied to address the crisis. The goal is to use modelling and simulation technologies for evaluating the effects of the measures taken on hypothetical scenarios. Research helps decision-makers to identify the most efficient means to prevent losses of life and damage to property.

The project develops solutions to complex crisis scenarios, which can result in massive damage and that require co-operation among various authorities and private parties, including trans-boundary cooperation. The project helps to provide crisis-management decision-makers with information on how extensive disasters should be prepared for, what measures are available during a crisis, and what their effects are.

An integrated modelling system is being designed in the project to simulate both the most likely of crisis situations and more remote scenarios, the required measures, and their effects. Domino and multi-risk effects are also to be taken into account: the integrated modelling system will give opportunities to assess impacts of natural disasters on chemical, nuclear and other industrial activities, critical infrastructures, etc. The system will be used for both short and long term planning, and training purposes.

The integrated modelling system will support comparison among alternatives and evaluation of possible effects of actions and investments, e.g.: Is the planned location for the protective structure correct? What evacuation options should be considered? Should certain areas be zoned as residential or industrial in the land-use plan – or is it best not to build there at all?

For example, the progress of an unforeseen flood can be simulated during the crisis through coupling of historical information with real-time field information. This provides a basis for decisions regarding e.g. evacuation, where the rescue resources should be targeted, and where additional flood protective structures should be constructed.

The CRISMA system helps to make complex and ambiguous issues more concrete to those that are responsible for making difficult decisions. The project helps us to understand how various accidents and crisis scenarios affect the people, society, infrastructure, the buildings, services, and the economy.

It will also be possible to use the simulation tools in planning collaboration among organisations or geographical areas. The simulation portal can be used to synthesise information provided by different parties and to create new information, including with graphical presentation. Currently, the relevant parties’ individual systems are often practically standalone, with almost no co-operation.

The CRISMA project is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. The CRISMA project’s total budget is 14.4 million euros, of which EU funding accounts for 10.1 million euros. The project ends in August 2015.

In addition to VTT, the project’s research partners are Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (Germany), AMRA Analysis and Monitoring of Environmental Risk (Italy), AIT Austrian Institute of Technology GmbH (Austria), the Association for the Development of Industrial Aerodynamics (Portugal), Tallinn University of Technology (Estonia), and the Finnish Meteorological Institute (Finland).

The end user’s perspective in the consortium is provided by the Emergency Services College (Finland), Deutsches Rotes Kreuz (Germany), Magen David Adom (Israel), the Public Safety Communication Europe Forum (Belgium).

Industrial representatives in the project are NICE Systems Ltd (Israel), EADS Deutschland GmbH – Cassidian (Germany), Insta DefSec (Finland), Spacebel S.A. (Belgium), Cismet GmbH (Germany), and ARTELIA Eau & Environnement (France).

For further information please contact:
VTT Technical Research Centre of Finland
Senior Scientist Anna-Mari Heikkilä
tel. +358 20 722 3490
e-mail address crisma.coordinator@vtt.fi
Project website: www.crismaproject.eu
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358 20 722 6747
olli.ernvall@vtt.fi
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Anna-Mari Heikkilä | VTT Info
Further information:
http://www.vtt.fi

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>