Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Minimising the outcome of disasters by simulating the effects of different actions

The CRISMA project aims to improve Europeans’ safety and security

The European CRISMA project prepares for disasters by developing a decision-support tool to help the authorities, responders, communities and private parties to prioritise the most important measures for saving lives and mitigating the effects of the crisis.

The CRISMA project, co-ordinated by VTT Technical Research Centre of Finland, is developing a planning tool for crises with immediate, extensive, and often irreversible consequences to the population and society. Crises of this type include natural disasters, toxic emissions, forest fires, and aircraft accidents.

The purpose of the CRISMA project is to improve the safety of Europeans by providing information on disasters and the effects of the various decisions and measures applied to address the crisis. The goal is to use modelling and simulation technologies for evaluating the effects of the measures taken on hypothetical scenarios. Research helps decision-makers to identify the most efficient means to prevent losses of life and damage to property.

The project develops solutions to complex crisis scenarios, which can result in massive damage and that require co-operation among various authorities and private parties, including trans-boundary cooperation. The project helps to provide crisis-management decision-makers with information on how extensive disasters should be prepared for, what measures are available during a crisis, and what their effects are.

An integrated modelling system is being designed in the project to simulate both the most likely of crisis situations and more remote scenarios, the required measures, and their effects. Domino and multi-risk effects are also to be taken into account: the integrated modelling system will give opportunities to assess impacts of natural disasters on chemical, nuclear and other industrial activities, critical infrastructures, etc. The system will be used for both short and long term planning, and training purposes.

The integrated modelling system will support comparison among alternatives and evaluation of possible effects of actions and investments, e.g.: Is the planned location for the protective structure correct? What evacuation options should be considered? Should certain areas be zoned as residential or industrial in the land-use plan – or is it best not to build there at all?

For example, the progress of an unforeseen flood can be simulated during the crisis through coupling of historical information with real-time field information. This provides a basis for decisions regarding e.g. evacuation, where the rescue resources should be targeted, and where additional flood protective structures should be constructed.

The CRISMA system helps to make complex and ambiguous issues more concrete to those that are responsible for making difficult decisions. The project helps us to understand how various accidents and crisis scenarios affect the people, society, infrastructure, the buildings, services, and the economy.

It will also be possible to use the simulation tools in planning collaboration among organisations or geographical areas. The simulation portal can be used to synthesise information provided by different parties and to create new information, including with graphical presentation. Currently, the relevant parties’ individual systems are often practically standalone, with almost no co-operation.

The CRISMA project is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. The CRISMA project’s total budget is 14.4 million euros, of which EU funding accounts for 10.1 million euros. The project ends in August 2015.

In addition to VTT, the project’s research partners are Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (Germany), AMRA Analysis and Monitoring of Environmental Risk (Italy), AIT Austrian Institute of Technology GmbH (Austria), the Association for the Development of Industrial Aerodynamics (Portugal), Tallinn University of Technology (Estonia), and the Finnish Meteorological Institute (Finland).

The end user’s perspective in the consortium is provided by the Emergency Services College (Finland), Deutsches Rotes Kreuz (Germany), Magen David Adom (Israel), the Public Safety Communication Europe Forum (Belgium).

Industrial representatives in the project are NICE Systems Ltd (Israel), EADS Deutschland GmbH – Cassidian (Germany), Insta DefSec (Finland), Spacebel S.A. (Belgium), Cismet GmbH (Germany), and ARTELIA Eau & Environnement (France).

For further information please contact:
VTT Technical Research Centre of Finland
Senior Scientist Anna-Mari Heikkilä
tel. +358 20 722 3490
e-mail address
Project website:
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358 20 722 6747
VTT - 70 years of technology for business and society
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and itspersonnel totals 3,100.

Anna-Mari Heikkilä | VTT Info
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>