Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimising downtime by decentralising control

31.10.2008
When complex, computerised control systems encounter a malfunction in any part of the process they control, the whole operation often grinds to a halt while the problem is diagnosed and fixed. Software developed by European researchers overcomes that problem by decentralisation.

Power stations, oil refineries, factories and other types of industrial plant will, when some more development work has been done, be much better able to work around localised faults, thanks to European research.

Road vehicles, ships and aircraft could also benefit from the results and prototypes developed by the EU-funded NeCST project which came to an end in late 2007.

With a partner mix comprising four universities, two software developers and an oil company, the project set out to develop and test a set of algorithms – simple software programmes – for use in networked control systems (NeCS).

These systems may operate at a number of different levels in complex industrial facilities. The project made them fault tolerant by making individual components of the overall system as autonomous as possible. This means, once a fault is diagnosed or predicted, and the problem is being pre-empted or fixed, the rest of the network can carry on operating as normal.

Autonomous but unified

Says project coordinator Eric Rondeau: “The systems can be seen as a distributed network of nodes operating under highly decentralised control, but unified in accomplishing complex system-wide goals.”

In human terms, this is somewhat analogous to a team sport, such as rugby where there are specialist players performing different functions, but all also working together as a team to fulfil the same objective – winning. If one team member is injured or sent off, the team still continues and compensates for the loss.

For example, in a petroleum-oil refinery (which was the actual practical testing ground for a prototype NeCST algorithm) the overall objective is to produce high-quality products. To do this, there are a large number of different processes, all of them falling under a networked control system. If a fault develops in one of the processes, then rather than the whole system shutting down for it to be fixed, NeCST isolates the fault and allows the rest of the system to continue functioning.

Tolerance is a virtue

To carry the rugby analogy further, if the captain is the one injured that still does not mean the team stops playing as other players step in and fill the leadership gap. In a NeCST system there are individual processors, each controlling a specific function. If the network goes down, and system control is cut off, they are still able to operate autonomously and make sure their part of the system continues working towards the common goal.

The partners set out to develop both a software platform and a toolkit of software modules or algorithms. These run on the platform and provide the monitoring, diagnostic and remedial-action functions for a fault-tolerant network – that is a network which can work around a fault rather than being forced to close down.

A key part of the project was to ensure the software developed could be integrated with, and embedded in, users’ current and future control systems. Once in place, the project objectives required it to be able to generate information on network behaviour and to communicate with, and advise, human operators.

Wider implications

These objectives were achieved during benchmark tests in a laboratory environment and a real-time test was successfully conducted in the oil refinery operated by the end-user partner.

Now the two software companies, which were partners in the test, are working on developing commercial applications, and the research work has been found to have wider implications.

French company PREDICT has integrated the NeCST software into its KASEM (Knowledge Advanced Services for E-Maintenance) platform. This is designed for nuclear and conventional power plants, oil refineries and shipping.

By creating a fault-tolerant control network, KASEM allows operations to continue when part of the system is down for whatever reason. This guaranteed continuity of service means regular maintenance work can be undertaken without the need for plant closure, which is of particular value to power plants.

Slovakian partner SAE-Automation has produced its own proprietary OpcDbGateway software based on the NeCST research. The first commercial installation of this will be in a HVAC (Heating, Ventilating, Air Conditioning) system in Malaysia.

“Although we were looking at the implications for industrial facilities, the software can be used in any situation where there is a networked control system, a modern car for example,” says Rondeau.

While there is still a lot of development to be done before the NeCST system is in widespread commercial use, its viability has been proven and there are important implications for enhanced performance in a range of fields.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90183

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>