Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightweight true random number generators a step closer

20.09.2010
The widespread use of true random number generators (TRNGs) has taken a step closer following the creation of the most lightweight designs to date by researchers at Queen's University Belfast's Institute of Electronics, Communications and Information Technology (ECIT).

Members of the Institute's cryptography research team have produced a series of circuits that are up to 50 per cent smaller than anything else currently available. Optimised for digital circuits, FPGA and ASIC, they push efficiency to the limit by using just one logic gate, one look-up table and four transistors respectively.

TRNGs are essential for IT security because virtually any security application relies on unpredictable numbers such as cryptographic keys. Current systems however are either too expensive or are not fast enough for many applications. That is why more nimble pseudo-random number generators are in widespread use even though the sequences they generate can be detected under certain types of attack, making them much less secure.

The approach of ECIT researchers Jiang Wu and Dr Máire O'Neill has been to use the white noise inside the circuit to generate the randomness, effectively simulating the toss of a coin. To do this, they developed a new mechanism to measure the noise and generate the random output.

"The most challenging part of the work was to find the new mechanism that can effectively sample the noise," said Wu.

"True random number generators have been extensively studied in recent years; many very efficient designs based on different noise measurement mechanisms have been proposed. It was not clear if more efficient designs were even possible. After investigating several candidates, finally we found a successful one."

The next step is to find ways of making the generators sufficiently robust to be embedded in devices such as mobile phones, smartcards and RFID tags, and – where they are used for security applications - to secure them from attack and develop appropriate countermeasures.

Other related work currently underway at ECIT includes designs for highly efficient physical unclonable functions (PUFs). These authenticate individual chips by extracting and identifying – but without revealing - their unique fingerprints which can then be used in a variety of security applications.

Media inquiries to Brian Arlow on +44 (0) 28 9147 0700 or (mob) +44 (0) 7860 289143 or email brianarlow@mac.com

NOTES TO EDITORS

ECIT

Part of The School of Electronics, Electrical Engineering and Computer Science at Queen's University Belfast, ECIT is housed in a specially designed 4,000m2 building, located off-campus, at the Northern Ireland Science Park in Belfast's Titanic Quarter. The Institute has four research groups covering areas such as broadband wireless communications, electronic data security, image and speech processing, telecommunications software and antenna design for mobile communications. The Institute currently employs 140 people.

Research at ECIT's High Frequency Electronics Circuits division covers aspects ranging from custom high performance gallium arsenide and sub micron silicon integrated chips to self adapting antenna solutions, monolithic packaging strategies and analytical and computational electromagnetics.

Cryptography research staff

Dr Máire O'Neill who leads ECIT's cryptography research team, held a prestigious five-year UK Royal Academy of Engineering research fellowship from 2003 to 2008 in the area of cryptographic algorithms and architectures for system-on-chip. She is the recent recipient of a £1.2m Leadership fellowship grant funded by the Engineering and Physical Sciences Research Council (EPSRC) to conduct research into next generation data security architectures.

She has received numerous awards for her research. She was awarded the Women's Engineering Society (WES) prize at the 2006 IET Young Woman Engineer of the Year event and in 2007 was named British Female Inventor of the Year at the British Female Inventors & Innovators Network (BFIIN) awards.

For further information please visit www.ecit.qub.ac.uk/ or contact Brian Arlow on +44 (0) 28 9147 0700 or (mob) +44 (0) 7860 289143

Brian Arlow | EurekAlert!
Further information:
http://www.ecit.qub.ac.uk/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>