Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightweight true random number generators a step closer

20.09.2010
The widespread use of true random number generators (TRNGs) has taken a step closer following the creation of the most lightweight designs to date by researchers at Queen's University Belfast's Institute of Electronics, Communications and Information Technology (ECIT).

Members of the Institute's cryptography research team have produced a series of circuits that are up to 50 per cent smaller than anything else currently available. Optimised for digital circuits, FPGA and ASIC, they push efficiency to the limit by using just one logic gate, one look-up table and four transistors respectively.

TRNGs are essential for IT security because virtually any security application relies on unpredictable numbers such as cryptographic keys. Current systems however are either too expensive or are not fast enough for many applications. That is why more nimble pseudo-random number generators are in widespread use even though the sequences they generate can be detected under certain types of attack, making them much less secure.

The approach of ECIT researchers Jiang Wu and Dr Máire O'Neill has been to use the white noise inside the circuit to generate the randomness, effectively simulating the toss of a coin. To do this, they developed a new mechanism to measure the noise and generate the random output.

"The most challenging part of the work was to find the new mechanism that can effectively sample the noise," said Wu.

"True random number generators have been extensively studied in recent years; many very efficient designs based on different noise measurement mechanisms have been proposed. It was not clear if more efficient designs were even possible. After investigating several candidates, finally we found a successful one."

The next step is to find ways of making the generators sufficiently robust to be embedded in devices such as mobile phones, smartcards and RFID tags, and – where they are used for security applications - to secure them from attack and develop appropriate countermeasures.

Other related work currently underway at ECIT includes designs for highly efficient physical unclonable functions (PUFs). These authenticate individual chips by extracting and identifying – but without revealing - their unique fingerprints which can then be used in a variety of security applications.

Media inquiries to Brian Arlow on +44 (0) 28 9147 0700 or (mob) +44 (0) 7860 289143 or email brianarlow@mac.com

NOTES TO EDITORS

ECIT

Part of The School of Electronics, Electrical Engineering and Computer Science at Queen's University Belfast, ECIT is housed in a specially designed 4,000m2 building, located off-campus, at the Northern Ireland Science Park in Belfast's Titanic Quarter. The Institute has four research groups covering areas such as broadband wireless communications, electronic data security, image and speech processing, telecommunications software and antenna design for mobile communications. The Institute currently employs 140 people.

Research at ECIT's High Frequency Electronics Circuits division covers aspects ranging from custom high performance gallium arsenide and sub micron silicon integrated chips to self adapting antenna solutions, monolithic packaging strategies and analytical and computational electromagnetics.

Cryptography research staff

Dr Máire O'Neill who leads ECIT's cryptography research team, held a prestigious five-year UK Royal Academy of Engineering research fellowship from 2003 to 2008 in the area of cryptographic algorithms and architectures for system-on-chip. She is the recent recipient of a £1.2m Leadership fellowship grant funded by the Engineering and Physical Sciences Research Council (EPSRC) to conduct research into next generation data security architectures.

She has received numerous awards for her research. She was awarded the Women's Engineering Society (WES) prize at the 2006 IET Young Woman Engineer of the Year event and in 2007 was named British Female Inventor of the Year at the British Female Inventors & Innovators Network (BFIIN) awards.

For further information please visit www.ecit.qub.ac.uk/ or contact Brian Arlow on +44 (0) 28 9147 0700 or (mob) +44 (0) 7860 289143

Brian Arlow | EurekAlert!
Further information:
http://www.ecit.qub.ac.uk/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>