Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightweight true random number generators a step closer

20.09.2010
The widespread use of true random number generators (TRNGs) has taken a step closer following the creation of the most lightweight designs to date by researchers at Queen's University Belfast's Institute of Electronics, Communications and Information Technology (ECIT).

Members of the Institute's cryptography research team have produced a series of circuits that are up to 50 per cent smaller than anything else currently available. Optimised for digital circuits, FPGA and ASIC, they push efficiency to the limit by using just one logic gate, one look-up table and four transistors respectively.

TRNGs are essential for IT security because virtually any security application relies on unpredictable numbers such as cryptographic keys. Current systems however are either too expensive or are not fast enough for many applications. That is why more nimble pseudo-random number generators are in widespread use even though the sequences they generate can be detected under certain types of attack, making them much less secure.

The approach of ECIT researchers Jiang Wu and Dr Máire O'Neill has been to use the white noise inside the circuit to generate the randomness, effectively simulating the toss of a coin. To do this, they developed a new mechanism to measure the noise and generate the random output.

"The most challenging part of the work was to find the new mechanism that can effectively sample the noise," said Wu.

"True random number generators have been extensively studied in recent years; many very efficient designs based on different noise measurement mechanisms have been proposed. It was not clear if more efficient designs were even possible. After investigating several candidates, finally we found a successful one."

The next step is to find ways of making the generators sufficiently robust to be embedded in devices such as mobile phones, smartcards and RFID tags, and – where they are used for security applications - to secure them from attack and develop appropriate countermeasures.

Other related work currently underway at ECIT includes designs for highly efficient physical unclonable functions (PUFs). These authenticate individual chips by extracting and identifying – but without revealing - their unique fingerprints which can then be used in a variety of security applications.

Media inquiries to Brian Arlow on +44 (0) 28 9147 0700 or (mob) +44 (0) 7860 289143 or email brianarlow@mac.com

NOTES TO EDITORS

ECIT

Part of The School of Electronics, Electrical Engineering and Computer Science at Queen's University Belfast, ECIT is housed in a specially designed 4,000m2 building, located off-campus, at the Northern Ireland Science Park in Belfast's Titanic Quarter. The Institute has four research groups covering areas such as broadband wireless communications, electronic data security, image and speech processing, telecommunications software and antenna design for mobile communications. The Institute currently employs 140 people.

Research at ECIT's High Frequency Electronics Circuits division covers aspects ranging from custom high performance gallium arsenide and sub micron silicon integrated chips to self adapting antenna solutions, monolithic packaging strategies and analytical and computational electromagnetics.

Cryptography research staff

Dr Máire O'Neill who leads ECIT's cryptography research team, held a prestigious five-year UK Royal Academy of Engineering research fellowship from 2003 to 2008 in the area of cryptographic algorithms and architectures for system-on-chip. She is the recent recipient of a £1.2m Leadership fellowship grant funded by the Engineering and Physical Sciences Research Council (EPSRC) to conduct research into next generation data security architectures.

She has received numerous awards for her research. She was awarded the Women's Engineering Society (WES) prize at the 2006 IET Young Woman Engineer of the Year event and in 2007 was named British Female Inventor of the Year at the British Female Inventors & Innovators Network (BFIIN) awards.

For further information please visit www.ecit.qub.ac.uk/ or contact Brian Arlow on +44 (0) 28 9147 0700 or (mob) +44 (0) 7860 289143

Brian Arlow | EurekAlert!
Further information:
http://www.ecit.qub.ac.uk/

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>