Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kraken becomes first academic machine to achieve petaflop

13.10.2009
The National Institute for Computational Sciences' (NICS's) Cray XT5 supercomputer—Kraken—has been upgraded to become the first academic system to surpass a thousand trillion calculations a second, or one petaflop, a landmark achievement that will greatly accelerate science and place Kraken among the top five computers in the world.

Managed by the University of Tennessee (UT) for the National Science Foundation (NSF), the system came online Oct. 5 with a peak performance of 1.03 petaflops. It features more than 16,000 six-core 2.6-GHz AMD Istanbul processors with nearly 100,000 compute cores.

In addition, an upgrade to 129 terabytes of memory (the equivalent of more than 13 thousand movies on DVD) effectively doubles the size of Kraken for researchers running some of the world's most sophisticated 3-D scientific computing applications. Simulation has become a key tool for researchers in a number of fields, from climate change to materials.

"At over a petaflop of peak computing power, and the ability to routinely run full machine jobs, Kraken will dominate large-scale NSF computing in the near future," said NICS Project Director Phil Andrews. "Its unprecedented computational capability and total available memory will allow academic users to treat problems that were previously inaccessible."

For example, understanding the mechanism behind the explosion of core-collapse supernovas will reveal much about our universe (these cataclysmic events are responsible for more than half the elements in the universe). Essentially three phenomena are being simulated to explore these explosions: hydrodynamics, nuclear burning or fusion, and neutrino transport, said UT astrophysicist Bronson Messer.

At the terascale, or trillions of calculations per second, Messer and his team were forced to simulate the star in 1-D as a perfect sphere and with unrealistic fusion physics. "Now, however, we are getting closer to physical reality," said Messer. "With petascale capability, we can simulate all three phenomena simultaneously with significant realism. This brings us closer to understanding the explosion mechanism and being able to make meaningful predictions."

From the physical makeup of the universe to the causes of global warming to the roles of proteins in disease, Kraken's increased computing muscle will reach far and wide.

As the main computational resource for NICS, the new system is linked to the NSF-supported TeraGrid, a network of supercomputers across the country that is the world's largest computational platform for open scientific research.

The system and the resulting NICS organization are the result of an NSF Track 2 award of $65 million to the University of Tennessee and its partners to provide for next-generation high-performance computing (HPC). The award was won in an open competition among HPC institutions vying to guarantee America's continued competitiveness through the next generation of supercomputers (systems greater than 10 teraflops and into the petascale).

"While reaching the petascale is a remarkable achievement in itself, the real strides will be made in the new science that petascale computing will enable," said Thomas Zacharia, NICS principal investigator, professor in electrical and computer engineering at the University of Tennessee and deputy director for science and technology at Oak Ridge National Laboratory. "Kraken is a game changer for research."

Gregory Scott Jones | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>