Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kraken becomes first academic machine to achieve petaflop

13.10.2009
The National Institute for Computational Sciences' (NICS's) Cray XT5 supercomputer—Kraken—has been upgraded to become the first academic system to surpass a thousand trillion calculations a second, or one petaflop, a landmark achievement that will greatly accelerate science and place Kraken among the top five computers in the world.

Managed by the University of Tennessee (UT) for the National Science Foundation (NSF), the system came online Oct. 5 with a peak performance of 1.03 petaflops. It features more than 16,000 six-core 2.6-GHz AMD Istanbul processors with nearly 100,000 compute cores.

In addition, an upgrade to 129 terabytes of memory (the equivalent of more than 13 thousand movies on DVD) effectively doubles the size of Kraken for researchers running some of the world's most sophisticated 3-D scientific computing applications. Simulation has become a key tool for researchers in a number of fields, from climate change to materials.

"At over a petaflop of peak computing power, and the ability to routinely run full machine jobs, Kraken will dominate large-scale NSF computing in the near future," said NICS Project Director Phil Andrews. "Its unprecedented computational capability and total available memory will allow academic users to treat problems that were previously inaccessible."

For example, understanding the mechanism behind the explosion of core-collapse supernovas will reveal much about our universe (these cataclysmic events are responsible for more than half the elements in the universe). Essentially three phenomena are being simulated to explore these explosions: hydrodynamics, nuclear burning or fusion, and neutrino transport, said UT astrophysicist Bronson Messer.

At the terascale, or trillions of calculations per second, Messer and his team were forced to simulate the star in 1-D as a perfect sphere and with unrealistic fusion physics. "Now, however, we are getting closer to physical reality," said Messer. "With petascale capability, we can simulate all three phenomena simultaneously with significant realism. This brings us closer to understanding the explosion mechanism and being able to make meaningful predictions."

From the physical makeup of the universe to the causes of global warming to the roles of proteins in disease, Kraken's increased computing muscle will reach far and wide.

As the main computational resource for NICS, the new system is linked to the NSF-supported TeraGrid, a network of supercomputers across the country that is the world's largest computational platform for open scientific research.

The system and the resulting NICS organization are the result of an NSF Track 2 award of $65 million to the University of Tennessee and its partners to provide for next-generation high-performance computing (HPC). The award was won in an open competition among HPC institutions vying to guarantee America's continued competitiveness through the next generation of supercomputers (systems greater than 10 teraflops and into the petascale).

"While reaching the petascale is a remarkable achievement in itself, the real strides will be made in the new science that petascale computing will enable," said Thomas Zacharia, NICS principal investigator, professor in electrical and computer engineering at the University of Tennessee and deputy director for science and technology at Oak Ridge National Laboratory. "Kraken is a game changer for research."

Gregory Scott Jones | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>