Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IT security for the daily life: Withdrawing money at cash machines with 'Google Glass'

06.03.2014

Taking photos with a wink, checking one's calendar with a glance of the right eye, reading text messages — the multinational cooperation Google wants to make it possible with Google Glass.

But what IT experts celebrate as a new milestone makes privacy groups skeptical. So far, few people have access to the prototype to test how it can be used in daily life. "Thanks to the Max Planck Institute for Informatics we are one of the few universities in Germany that can do research with Google Glass", says Dominique Schröder, assistant professor of Cryptographic Algorithms at Saarland University.


Mark Simkin wants to use "Google Glass" to withdraw money at a cash machine in such a secure way that no spying is possible.

Credit: Oliver Dietze

The futuristic-looking device consists of a glasses frame on which a camera and a mini computer are installed. It depicts information in the user's field of vision via a glass prism that is installed at the front end of the right temple. According to the German computer magazine "c't", this causes an effect "as if the user were looking at a 24 inch screen from a distance of two and a half meters". Schröder, who also does research at the Center for IT-Security, Privacy and Accountability (CISPA), located only a few yards away, is aware of the data security concerns with Google Glass:

"We know that you can use it to abuse data. But it can also be used to protect data." To prove this, Schröder and his group combine "Google Glass" with cryptographic methods and techniques from automated image analysis to create the software system "Ubic". By using Ubic, withdrawing money at a cash machine would change as follows: The customer identifies himself to the cash machine.

This requests from a reliable instance the public key of the customer. It uses the key to encrypt the one-way personal identification number (PIN) and seals it additionally with a "digital signature", the digital counterpart of the conventional signature. The result shows up on the screen as a black-and-white pattern, a so-called QR code. The PIN that is hidden below is only visible for the identified wearer of the glasses. Google Glass decrypts it and shows it in the wearer's field of vision."

Although the process occurs in public, nobody is able to spy on the PIN", explains Schröder. This is not the case if PINs are sent to a smart phone. To spy on the PIN while it is being entered would also be useless, since the PIN is re-generated each time the customer uses the cash machine. An attacker also wearing a Google Glass is not able to spy on the process, either. The digital signature guarantees that no assailant is able to intrude between the customer and the cash machine as during the so-called "skimming", where the assailant can impersonate the customer.

Only the customer is able to decrypt the encryption by the public key with his secret key. As long as this is safely stored on the Google Glass, his money is also safe. At the computer expo Cebit, the researchers will also present how Google Glass can be used to hide information. Several persons all wearing Google Glass can read the same document with encrypted text at the same time, but in their fields of vision they can only see the text passages that are intended for them.

"This could be interesting, for example, for large companies or agencies that are collecting information in one document, but do not want to show all parts to everybody", explains Mark Simkin, who was one of the developers of Ubic. A large electric company has already sent a request to the computer scientists in Saarbrücken. Google Glass is expected to enter the American market this year.

###

Background information about computer science research at Saarland University in Germany

The Department of Computer Science represents the center of computer science research in Saarbrücken. Seven other worldwide renowned research institutes are close by the department: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA) and the Cluster of Excellence "Multimodal Computing and Interaction".

More Information:

Project video: http://goo.gl/4mS0Jq

Further Questions:

Dominique Schroeder
Assistant Professor
Cryptographic Algorithms
Phone: +49 681 302-71922
Email: ds@ca.cs.uni-saarland.de

Mark Simkin
Cryptographic Algorithms
Email: simkin@ca.cs.uni-saarland.de

Editor:

Gordon Bolduan
Science Communication
Competence Center of Informatics
Phone: +49 (0)681 302-70741
Email: bolduan@mmci.uni-saarland.de

Dominique Schroeder | EurekAlert!
Further information:
http://www.uni-saarland.de

Further reports about: Algorithms CISPA Computing Google Google Glass PIN Phone Saarland skimming techniques

More articles from Information Technology:

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

nachricht Engineers take first step toward flexible, wearable, tricorder-like device
24.05.2016 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>