Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IT security for the daily life: Withdrawing money at cash machines with 'Google Glass'

06.03.2014

Taking photos with a wink, checking one's calendar with a glance of the right eye, reading text messages — the multinational cooperation Google wants to make it possible with Google Glass.

But what IT experts celebrate as a new milestone makes privacy groups skeptical. So far, few people have access to the prototype to test how it can be used in daily life. "Thanks to the Max Planck Institute for Informatics we are one of the few universities in Germany that can do research with Google Glass", says Dominique Schröder, assistant professor of Cryptographic Algorithms at Saarland University.


Mark Simkin wants to use "Google Glass" to withdraw money at a cash machine in such a secure way that no spying is possible.

Credit: Oliver Dietze

The futuristic-looking device consists of a glasses frame on which a camera and a mini computer are installed. It depicts information in the user's field of vision via a glass prism that is installed at the front end of the right temple. According to the German computer magazine "c't", this causes an effect "as if the user were looking at a 24 inch screen from a distance of two and a half meters". Schröder, who also does research at the Center for IT-Security, Privacy and Accountability (CISPA), located only a few yards away, is aware of the data security concerns with Google Glass:

"We know that you can use it to abuse data. But it can also be used to protect data." To prove this, Schröder and his group combine "Google Glass" with cryptographic methods and techniques from automated image analysis to create the software system "Ubic". By using Ubic, withdrawing money at a cash machine would change as follows: The customer identifies himself to the cash machine.

This requests from a reliable instance the public key of the customer. It uses the key to encrypt the one-way personal identification number (PIN) and seals it additionally with a "digital signature", the digital counterpart of the conventional signature. The result shows up on the screen as a black-and-white pattern, a so-called QR code. The PIN that is hidden below is only visible for the identified wearer of the glasses. Google Glass decrypts it and shows it in the wearer's field of vision."

Although the process occurs in public, nobody is able to spy on the PIN", explains Schröder. This is not the case if PINs are sent to a smart phone. To spy on the PIN while it is being entered would also be useless, since the PIN is re-generated each time the customer uses the cash machine. An attacker also wearing a Google Glass is not able to spy on the process, either. The digital signature guarantees that no assailant is able to intrude between the customer and the cash machine as during the so-called "skimming", where the assailant can impersonate the customer.

Only the customer is able to decrypt the encryption by the public key with his secret key. As long as this is safely stored on the Google Glass, his money is also safe. At the computer expo Cebit, the researchers will also present how Google Glass can be used to hide information. Several persons all wearing Google Glass can read the same document with encrypted text at the same time, but in their fields of vision they can only see the text passages that are intended for them.

"This could be interesting, for example, for large companies or agencies that are collecting information in one document, but do not want to show all parts to everybody", explains Mark Simkin, who was one of the developers of Ubic. A large electric company has already sent a request to the computer scientists in Saarbrücken. Google Glass is expected to enter the American market this year.

###

Background information about computer science research at Saarland University in Germany

The Department of Computer Science represents the center of computer science research in Saarbrücken. Seven other worldwide renowned research institutes are close by the department: The Max Planck Institutes for Informatics and for Software Systems, the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the Center for IT Security, Privacy and Accountability (CISPA) and the Cluster of Excellence "Multimodal Computing and Interaction".

More Information:

Project video: http://goo.gl/4mS0Jq

Further Questions:

Dominique Schroeder
Assistant Professor
Cryptographic Algorithms
Phone: +49 681 302-71922
Email: ds@ca.cs.uni-saarland.de

Mark Simkin
Cryptographic Algorithms
Email: simkin@ca.cs.uni-saarland.de

Editor:

Gordon Bolduan
Science Communication
Competence Center of Informatics
Phone: +49 (0)681 302-70741
Email: bolduan@mmci.uni-saarland.de

Dominique Schroeder | EurekAlert!
Further information:
http://www.uni-saarland.de

Further reports about: Algorithms CISPA Computing Google Google Glass PIN Phone Saarland skimming techniques

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>