Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial management: Avoiding alarms

28.08.2014

An intelligent system that predicts when alarms might be triggered could greatly improve the management of industrial plants.

A*STAR researchers have developed an anticipatory alarm system based on dynamic models of industrial processes using concepts similar to extreme weather forecasting.


Operators managing a complex industrial plant can greatly benefit from models that predict when problems may arise.

© Georgijus Pavlovas/iStock/Thinkstock

A large industrial plant such as an oil refinery contains many interdependent units. In such a complex system, many things could potentially go wrong, which explains why engineers need sophisticated alarms to help them deal with abnormal situations. Having too many alarms, however, is almost as problematic as having none — especially if all of the alarms go off at the same time.

Arief Adhitya and co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore and the National University of Singapore have developed a system that provides accurate short-term predictions of the state of the machinery in a plant, thus enabling operators to take action before alarms are triggered [1].

“With so many interacting units, a fault can trigger a domino effect, setting off a large number of alarms within a short time, known as an alarm flood. This can confuse and overwhelm an operator, who might then activate the emergency shutdown, which leads to a costly loss of production,” says Adhitya. “Recent studies reveal that operators who are able to predict the evolution of the state of the plant are best able to cope with alarm floods.”

Industrial alarm systems monitor large numbers of process variables — such as the temperature or pressure in boilers — and activate alarms if those variables go outside defined ‘safe’ ranges. Previous methods of dealing with alarm floods have included dynamic adjustments of alarm limits and screening of alarms to remove false or duplicate alarms.

Adhitya and co-workers went further. They combined detailed models of the industrial processes with historical data relating to machine behavior to estimate the rates of change of process variables. With this additional information, operators can assess when each variable is likely to trigger its alarm and can take evasive action.

The researchers tested their system with a case study of a depropanizer plant, which separates hydrocarbons of different sizes in an oil refinery. They simulated several faults, including loss of cooling water and fouling of the condenser, and found that their system predicted all the alarms successfully.

More importantly, the added information provided by their system reduced the diagnosis time for operators by around 35 seconds. The team is hopeful that their system could improve the efficiency of many different processes within and outside the oil industry.

Reference

1. Xu, S., Adhitya, A. & Srinivasan, R. Hybrid model-based framework for alarm anticipation. Industrial & Engineering Chemistry Research 53, 5182–5193 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7023
http://www.researchsea.com

Further reports about: A*STAR Industrial Technology diagnosis machinery pressure temperature

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>