Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial management: Avoiding alarms

28.08.2014

An intelligent system that predicts when alarms might be triggered could greatly improve the management of industrial plants.

A*STAR researchers have developed an anticipatory alarm system based on dynamic models of industrial processes using concepts similar to extreme weather forecasting.


Operators managing a complex industrial plant can greatly benefit from models that predict when problems may arise.

© Georgijus Pavlovas/iStock/Thinkstock

A large industrial plant such as an oil refinery contains many interdependent units. In such a complex system, many things could potentially go wrong, which explains why engineers need sophisticated alarms to help them deal with abnormal situations. Having too many alarms, however, is almost as problematic as having none — especially if all of the alarms go off at the same time.

Arief Adhitya and co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore and the National University of Singapore have developed a system that provides accurate short-term predictions of the state of the machinery in a plant, thus enabling operators to take action before alarms are triggered [1].

“With so many interacting units, a fault can trigger a domino effect, setting off a large number of alarms within a short time, known as an alarm flood. This can confuse and overwhelm an operator, who might then activate the emergency shutdown, which leads to a costly loss of production,” says Adhitya. “Recent studies reveal that operators who are able to predict the evolution of the state of the plant are best able to cope with alarm floods.”

Industrial alarm systems monitor large numbers of process variables — such as the temperature or pressure in boilers — and activate alarms if those variables go outside defined ‘safe’ ranges. Previous methods of dealing with alarm floods have included dynamic adjustments of alarm limits and screening of alarms to remove false or duplicate alarms.

Adhitya and co-workers went further. They combined detailed models of the industrial processes with historical data relating to machine behavior to estimate the rates of change of process variables. With this additional information, operators can assess when each variable is likely to trigger its alarm and can take evasive action.

The researchers tested their system with a case study of a depropanizer plant, which separates hydrocarbons of different sizes in an oil refinery. They simulated several faults, including loss of cooling water and fouling of the condenser, and found that their system predicted all the alarms successfully.

More importantly, the added information provided by their system reduced the diagnosis time for operators by around 35 seconds. The team is hopeful that their system could improve the efficiency of many different processes within and outside the oil industry.

Reference

1. Xu, S., Adhitya, A. & Srinivasan, R. Hybrid model-based framework for alarm anticipation. Industrial & Engineering Chemistry Research 53, 5182–5193 (2014).

Lee Swee Heng | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7023
http://www.researchsea.com

Further reports about: A*STAR Industrial Technology diagnosis machinery pressure temperature

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

Motorcycle right behind the racing cyclist can improve time in Giro prologue

04.05.2016 | Physics and Astronomy

Scientists challenge conventional wisdom to improve predictions of bootstrap current

04.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>