Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high frequency amplifier harnesses millimeter waves in silicon for fast wireless

13.02.2009
UC San Diego electrical engineers presents record breaking amplifier for high capacity wireless communications systems at ISSCC 2009

New imaging and high capacity wireless communications systems are one step closer to reality, thanks to a millimeter wave amplifier invented at the University of California, San Diego and unveiled on Feb 11, 2009 at the prestigious International Solid-State Circuits Conference (ISSCC) in San Francisco, Calif.

The new silicon-based amplifier marks progress toward high capacity wireless communications systems that will operate at millimeter wave frequencies (70-110GHz) and could provide data transfer rates as fast as 10 Gigabits per second over a kilometer. Toward this goal, the new amplifier provides both high gain (the ability to increase the volume of a signal) and high bandwidth (the ability to do it over a broad range of tones).

It has a direct transmission line path from the input to the output that carries electromagnetic waves—undisrupted—across the surface of a silicon chip. Amplification "stages" along this transmission line boost the signal power by monitoring the signal amplitude and generating feedback in just trillionths of a second, feedback that injects additional energy in phase to the signal. The amplifier provides record-breaking gain of 26-30dB at 100GHz and allows wave propagation along the chip surface.

James Buckwalter, an assistant professor in the Department of Electrical and Computer Engineering at UC San Diego's Jacobs School of Engineering, invented the amplifier and named it the Cascaded Constructive Wave Amplifier.

"Cascaded constructive wave amplification is a new circuit architecture that can push silicon into new operating regimes near the fundamental limits of Moore's Law and allow the ultra high data rates that the millimeter wavelength range of the electromagnetic spectrum offers," explained Buckwalter.

The millimeter wavelength range of the electromagnetic spectrum is relatively unexplored for commercial use, in part, because it has been difficult and expensive to build the necessary high frequency amplifiers. Many of today's millimeter wave amplifiers, for example, require exotic and expensive semiconductor materials.

"We're exploring how silicon can play a role at frequencies exceeding 100 Gigahertz. Silicon has the advantage of allowing inexpensive integration of microwave and now perhaps millimeter wave components," said Buckwalter.

A is for Amplification

Today's Wi-Fi and WiMax systems operate at a frequency of 2.5-5GHz and are capable of handling megabits of information per second. "If you want higher data rates, you need to find ways to transmit information wirelessly at rates faster than what is available at 2.5 Gigahertz. This new amplifier is aimed at opening millimeter wave frequency bands, where much more bandwidth are available and where higher data transfer rates, as fast as 10 Gigabits per second over a kilometer, are possible," explained Buckwalter.

Point-to-point wireless communication is a low-cost approach to getting optical fiber speeds. "You could use this amplification method to boost signal strength of a 100 Gigahertz signal from the transmitter in your ISP and also at the receiver in your home to detect the signal," explained Buckwalter.

Feedback Tames the Wave

"The really cool thing about this chip is that it's the first time traveling waves have been amplified along an uninterrupted transmission line...we've found a new architecture that allows higher gain than what people supposed for waves traveling near the speed of light on silicon chips," said Buckwalter.

The periodic amplification stages along the transmission line are crucial to the amplification process. They monitor waves as they propagate through the transmission line and spontaneously inject energy into the wave without interrupting its propagation down the transmission line.

In particular, the strength of the wave is constantly monitored at the output side of each amplification stage. Feedback is provided through a fast transistor that feeds energy into the input of the transmission line and hits the wave with that energy 2.5 trillionths of a second later—a quarter of the wave's period. In this way, the wave is constantly being strengthened as it moves uninhibited through each of the amplification stages along the transmission line.

This new amplifier design is distinctly different from existing amplifier technologies. The new Cascaded Constructive Wave Amplifier provides high gain—the signal gain increases exponentially with the number of amplification stages—without absorbing and regenerating the wave energy. The cascaded amplifiers that are found in all cell phones also have high gain——but they absorb and regenerate signals.

"We've taken a wave that travels along the surface of the silicon near the speed of light and found a way to amplify the signal strength without interrupting the wave," said Buckwalter. "We have found a way to tame millimeter waves on silicon."

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>