Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high frequency amplifier harnesses millimeter waves in silicon for fast wireless

13.02.2009
UC San Diego electrical engineers presents record breaking amplifier for high capacity wireless communications systems at ISSCC 2009

New imaging and high capacity wireless communications systems are one step closer to reality, thanks to a millimeter wave amplifier invented at the University of California, San Diego and unveiled on Feb 11, 2009 at the prestigious International Solid-State Circuits Conference (ISSCC) in San Francisco, Calif.

The new silicon-based amplifier marks progress toward high capacity wireless communications systems that will operate at millimeter wave frequencies (70-110GHz) and could provide data transfer rates as fast as 10 Gigabits per second over a kilometer. Toward this goal, the new amplifier provides both high gain (the ability to increase the volume of a signal) and high bandwidth (the ability to do it over a broad range of tones).

It has a direct transmission line path from the input to the output that carries electromagnetic waves—undisrupted—across the surface of a silicon chip. Amplification "stages" along this transmission line boost the signal power by monitoring the signal amplitude and generating feedback in just trillionths of a second, feedback that injects additional energy in phase to the signal. The amplifier provides record-breaking gain of 26-30dB at 100GHz and allows wave propagation along the chip surface.

James Buckwalter, an assistant professor in the Department of Electrical and Computer Engineering at UC San Diego's Jacobs School of Engineering, invented the amplifier and named it the Cascaded Constructive Wave Amplifier.

"Cascaded constructive wave amplification is a new circuit architecture that can push silicon into new operating regimes near the fundamental limits of Moore's Law and allow the ultra high data rates that the millimeter wavelength range of the electromagnetic spectrum offers," explained Buckwalter.

The millimeter wavelength range of the electromagnetic spectrum is relatively unexplored for commercial use, in part, because it has been difficult and expensive to build the necessary high frequency amplifiers. Many of today's millimeter wave amplifiers, for example, require exotic and expensive semiconductor materials.

"We're exploring how silicon can play a role at frequencies exceeding 100 Gigahertz. Silicon has the advantage of allowing inexpensive integration of microwave and now perhaps millimeter wave components," said Buckwalter.

A is for Amplification

Today's Wi-Fi and WiMax systems operate at a frequency of 2.5-5GHz and are capable of handling megabits of information per second. "If you want higher data rates, you need to find ways to transmit information wirelessly at rates faster than what is available at 2.5 Gigahertz. This new amplifier is aimed at opening millimeter wave frequency bands, where much more bandwidth are available and where higher data transfer rates, as fast as 10 Gigabits per second over a kilometer, are possible," explained Buckwalter.

Point-to-point wireless communication is a low-cost approach to getting optical fiber speeds. "You could use this amplification method to boost signal strength of a 100 Gigahertz signal from the transmitter in your ISP and also at the receiver in your home to detect the signal," explained Buckwalter.

Feedback Tames the Wave

"The really cool thing about this chip is that it's the first time traveling waves have been amplified along an uninterrupted transmission line...we've found a new architecture that allows higher gain than what people supposed for waves traveling near the speed of light on silicon chips," said Buckwalter.

The periodic amplification stages along the transmission line are crucial to the amplification process. They monitor waves as they propagate through the transmission line and spontaneously inject energy into the wave without interrupting its propagation down the transmission line.

In particular, the strength of the wave is constantly monitored at the output side of each amplification stage. Feedback is provided through a fast transistor that feeds energy into the input of the transmission line and hits the wave with that energy 2.5 trillionths of a second later—a quarter of the wave's period. In this way, the wave is constantly being strengthened as it moves uninhibited through each of the amplification stages along the transmission line.

This new amplifier design is distinctly different from existing amplifier technologies. The new Cascaded Constructive Wave Amplifier provides high gain—the signal gain increases exponentially with the number of amplification stages—without absorbing and regenerating the wave energy. The cascaded amplifiers that are found in all cell phones also have high gain——but they absorb and regenerate signals.

"We've taken a wave that travels along the surface of the silicon near the speed of light and found a way to amplify the signal strength without interrupting the wave," said Buckwalter. "We have found a way to tame millimeter waves on silicon."

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>