Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high frequency amplifier harnesses millimeter waves in silicon for fast wireless

13.02.2009
UC San Diego electrical engineers presents record breaking amplifier for high capacity wireless communications systems at ISSCC 2009

New imaging and high capacity wireless communications systems are one step closer to reality, thanks to a millimeter wave amplifier invented at the University of California, San Diego and unveiled on Feb 11, 2009 at the prestigious International Solid-State Circuits Conference (ISSCC) in San Francisco, Calif.

The new silicon-based amplifier marks progress toward high capacity wireless communications systems that will operate at millimeter wave frequencies (70-110GHz) and could provide data transfer rates as fast as 10 Gigabits per second over a kilometer. Toward this goal, the new amplifier provides both high gain (the ability to increase the volume of a signal) and high bandwidth (the ability to do it over a broad range of tones).

It has a direct transmission line path from the input to the output that carries electromagnetic waves—undisrupted—across the surface of a silicon chip. Amplification "stages" along this transmission line boost the signal power by monitoring the signal amplitude and generating feedback in just trillionths of a second, feedback that injects additional energy in phase to the signal. The amplifier provides record-breaking gain of 26-30dB at 100GHz and allows wave propagation along the chip surface.

James Buckwalter, an assistant professor in the Department of Electrical and Computer Engineering at UC San Diego's Jacobs School of Engineering, invented the amplifier and named it the Cascaded Constructive Wave Amplifier.

"Cascaded constructive wave amplification is a new circuit architecture that can push silicon into new operating regimes near the fundamental limits of Moore's Law and allow the ultra high data rates that the millimeter wavelength range of the electromagnetic spectrum offers," explained Buckwalter.

The millimeter wavelength range of the electromagnetic spectrum is relatively unexplored for commercial use, in part, because it has been difficult and expensive to build the necessary high frequency amplifiers. Many of today's millimeter wave amplifiers, for example, require exotic and expensive semiconductor materials.

"We're exploring how silicon can play a role at frequencies exceeding 100 Gigahertz. Silicon has the advantage of allowing inexpensive integration of microwave and now perhaps millimeter wave components," said Buckwalter.

A is for Amplification

Today's Wi-Fi and WiMax systems operate at a frequency of 2.5-5GHz and are capable of handling megabits of information per second. "If you want higher data rates, you need to find ways to transmit information wirelessly at rates faster than what is available at 2.5 Gigahertz. This new amplifier is aimed at opening millimeter wave frequency bands, where much more bandwidth are available and where higher data transfer rates, as fast as 10 Gigabits per second over a kilometer, are possible," explained Buckwalter.

Point-to-point wireless communication is a low-cost approach to getting optical fiber speeds. "You could use this amplification method to boost signal strength of a 100 Gigahertz signal from the transmitter in your ISP and also at the receiver in your home to detect the signal," explained Buckwalter.

Feedback Tames the Wave

"The really cool thing about this chip is that it's the first time traveling waves have been amplified along an uninterrupted transmission line...we've found a new architecture that allows higher gain than what people supposed for waves traveling near the speed of light on silicon chips," said Buckwalter.

The periodic amplification stages along the transmission line are crucial to the amplification process. They monitor waves as they propagate through the transmission line and spontaneously inject energy into the wave without interrupting its propagation down the transmission line.

In particular, the strength of the wave is constantly monitored at the output side of each amplification stage. Feedback is provided through a fast transistor that feeds energy into the input of the transmission line and hits the wave with that energy 2.5 trillionths of a second later—a quarter of the wave's period. In this way, the wave is constantly being strengthened as it moves uninhibited through each of the amplification stages along the transmission line.

This new amplifier design is distinctly different from existing amplifier technologies. The new Cascaded Constructive Wave Amplifier provides high gain—the signal gain increases exponentially with the number of amplification stages—without absorbing and regenerating the wave energy. The cascaded amplifiers that are found in all cell phones also have high gain——but they absorb and regenerate signals.

"We've taken a wave that travels along the surface of the silicon near the speed of light and found a way to amplify the signal strength without interrupting the wave," said Buckwalter. "We have found a way to tame millimeter waves on silicon."

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>