Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faculty Voices - Aiming to create an incredible computer

18.09.2008
Prof. Itoh's laboratory focuses on quantum computers that use atoms for calculation.

Inviting researchers from around the world, everyone aims at positively getting out of stereotypes in their research and everyday life.

If I say, "Raise your hand if you have never used a computer", and if anyone raises his/her hand, this is an incredible person. From cellular phones to rice-cookers, every electric appliance uses a computer. A vehicle may look like a chunk of machinery, but actually half of it is made of electrical parts. I am quite sure that no reader of this column can raise his/her hand. Now then, if a computer is so important in our modern society, what is the ultimate computer?

This definition may vary. For example, a computer that hardly uses electricity is environmentally-friendly. If it can also generate solar power, there is nothing more to say. Some seek to realize an impossible calculation with a computer. An American scientist that I know is studying how much improvement can be expected if the entire energy of the universe is used to improve the performance of computers. You and I both will have to use all of our efforts. This may sound nonsense, but yes, it may be an incredible computer. The major research area of my group is quantum computers that use atoms for calculation. These are incredible computers, more exciting as a scientific theme rather than practical, of an ultimately small world of quantum mechanics. It is similar to developing a space shuttle when everyone else is trying to improve the performance of cars, seeking to create an ultimate vehicle.

Come to think of it, progress in research is somewhat similar to human growth. There is no definition of an incredible person, but incredible people do exist, and they are somehow different from other people. By getting out of stereotypes and be full of ideas in our research, I am trying to realize the "half learning, half teaching" philosophy of Yukichi Fukuzawa in our laboratory so that both students and myself can grow uniquely. Knowledge of physics and mathematics is necessary, but more than that, you should have scientific curiosity and viewpoints that are different from other people.

However, as long as I work for Keio University, which emphasizes on jitsugaku (practical learning), I feel that we should also have a realistic dream. One thing I recently came up with is "no overtime work computer". When the performance of the computer improves and becomes 2 to 3 times faster, can people get to go home early? The answer is no, and I hear that the amount of computer work increases. Improvement of network technologies resulted in having to work at home after work. Why don't we get rid of this? If you have any good ideas, let's work on it together. I hope to hear from you.

Faculty Profile

Prof. Kohei Itoh, Faculty of Science and Technology

Prof. Itoh joined Keio from Yochisha Elementary School, and advanced to Futsubu School, Keio Senior High School and to the Faculty of Science and Technology at Keio University. He graduated in 1989. He obtained a Master's degree at University of California, Berkley in 1992, and a Ph.D. in 1994. The following year, he became Research Assistant at the Faculty of Science and Technology of Keio University. He then served as Assistant Professor and Associate Professor before becoming Professor in 2007. During this time, he also served in the Executive Board Committee of the Physical Society of Japan, and in the Executive Board Committee of the Institute of Pure and Applied Physics. His major research area is semiconductor physics. He was awarded the Japan IBM Science Award in 2006 for his research in creative electronics.

Student's Voice
Yasuo Shimizu, 3rd year level, doctoral program, Graduate School of Science and Technology

With a professional mind

Electronic appliances that surround us such as computers and cellular phones use semiconductors. We are one of the few laboratories in the world to focus on defining the physical phenomenon of silicon, king of semiconductors, with a new approach using isotopic material. Although it is thought that the semiconductor as a research theme has been exhausted, the material still holds unexplained features. Research is based on the autonomy of the individual, and if you work hard, you have a chance to lead the world creatively. Most of our research is related to maintaining our equipment, but because we put in great efforts, it is a real pleasure when we produce positive results. Prof. Itoh is enthusiastic about inviting students, researchers and professors from around the world, and because we conduct experiments and have discussions with them, communicating in English is a must and we also have many opportunities for cultural exchange. Students have many opportunities to expand their research activities beyond the campus, and our research environment is really appealing for students with a professional mind.

Center for Research Promotion | ResearchSEA
Further information:
http://www.researchsea.com
http://www.keio.ac.jp/english/keio_in_depth/research/008.html

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>