Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faculty Voices - Aiming to create an incredible computer

18.09.2008
Prof. Itoh's laboratory focuses on quantum computers that use atoms for calculation.

Inviting researchers from around the world, everyone aims at positively getting out of stereotypes in their research and everyday life.

If I say, "Raise your hand if you have never used a computer", and if anyone raises his/her hand, this is an incredible person. From cellular phones to rice-cookers, every electric appliance uses a computer. A vehicle may look like a chunk of machinery, but actually half of it is made of electrical parts. I am quite sure that no reader of this column can raise his/her hand. Now then, if a computer is so important in our modern society, what is the ultimate computer?

This definition may vary. For example, a computer that hardly uses electricity is environmentally-friendly. If it can also generate solar power, there is nothing more to say. Some seek to realize an impossible calculation with a computer. An American scientist that I know is studying how much improvement can be expected if the entire energy of the universe is used to improve the performance of computers. You and I both will have to use all of our efforts. This may sound nonsense, but yes, it may be an incredible computer. The major research area of my group is quantum computers that use atoms for calculation. These are incredible computers, more exciting as a scientific theme rather than practical, of an ultimately small world of quantum mechanics. It is similar to developing a space shuttle when everyone else is trying to improve the performance of cars, seeking to create an ultimate vehicle.

Come to think of it, progress in research is somewhat similar to human growth. There is no definition of an incredible person, but incredible people do exist, and they are somehow different from other people. By getting out of stereotypes and be full of ideas in our research, I am trying to realize the "half learning, half teaching" philosophy of Yukichi Fukuzawa in our laboratory so that both students and myself can grow uniquely. Knowledge of physics and mathematics is necessary, but more than that, you should have scientific curiosity and viewpoints that are different from other people.

However, as long as I work for Keio University, which emphasizes on jitsugaku (practical learning), I feel that we should also have a realistic dream. One thing I recently came up with is "no overtime work computer". When the performance of the computer improves and becomes 2 to 3 times faster, can people get to go home early? The answer is no, and I hear that the amount of computer work increases. Improvement of network technologies resulted in having to work at home after work. Why don't we get rid of this? If you have any good ideas, let's work on it together. I hope to hear from you.

Faculty Profile

Prof. Kohei Itoh, Faculty of Science and Technology

Prof. Itoh joined Keio from Yochisha Elementary School, and advanced to Futsubu School, Keio Senior High School and to the Faculty of Science and Technology at Keio University. He graduated in 1989. He obtained a Master's degree at University of California, Berkley in 1992, and a Ph.D. in 1994. The following year, he became Research Assistant at the Faculty of Science and Technology of Keio University. He then served as Assistant Professor and Associate Professor before becoming Professor in 2007. During this time, he also served in the Executive Board Committee of the Physical Society of Japan, and in the Executive Board Committee of the Institute of Pure and Applied Physics. His major research area is semiconductor physics. He was awarded the Japan IBM Science Award in 2006 for his research in creative electronics.

Student's Voice
Yasuo Shimizu, 3rd year level, doctoral program, Graduate School of Science and Technology

With a professional mind

Electronic appliances that surround us such as computers and cellular phones use semiconductors. We are one of the few laboratories in the world to focus on defining the physical phenomenon of silicon, king of semiconductors, with a new approach using isotopic material. Although it is thought that the semiconductor as a research theme has been exhausted, the material still holds unexplained features. Research is based on the autonomy of the individual, and if you work hard, you have a chance to lead the world creatively. Most of our research is related to maintaining our equipment, but because we put in great efforts, it is a real pleasure when we produce positive results. Prof. Itoh is enthusiastic about inviting students, researchers and professors from around the world, and because we conduct experiments and have discussions with them, communicating in English is a must and we also have many opportunities for cultural exchange. Students have many opportunities to expand their research activities beyond the campus, and our research environment is really appealing for students with a professional mind.

Center for Research Promotion | ResearchSEA
Further information:
http://www.researchsea.com
http://www.keio.ac.jp/english/keio_in_depth/research/008.html

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>