Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faculty Voices - Aiming to create an incredible computer

18.09.2008
Prof. Itoh's laboratory focuses on quantum computers that use atoms for calculation.

Inviting researchers from around the world, everyone aims at positively getting out of stereotypes in their research and everyday life.

If I say, "Raise your hand if you have never used a computer", and if anyone raises his/her hand, this is an incredible person. From cellular phones to rice-cookers, every electric appliance uses a computer. A vehicle may look like a chunk of machinery, but actually half of it is made of electrical parts. I am quite sure that no reader of this column can raise his/her hand. Now then, if a computer is so important in our modern society, what is the ultimate computer?

This definition may vary. For example, a computer that hardly uses electricity is environmentally-friendly. If it can also generate solar power, there is nothing more to say. Some seek to realize an impossible calculation with a computer. An American scientist that I know is studying how much improvement can be expected if the entire energy of the universe is used to improve the performance of computers. You and I both will have to use all of our efforts. This may sound nonsense, but yes, it may be an incredible computer. The major research area of my group is quantum computers that use atoms for calculation. These are incredible computers, more exciting as a scientific theme rather than practical, of an ultimately small world of quantum mechanics. It is similar to developing a space shuttle when everyone else is trying to improve the performance of cars, seeking to create an ultimate vehicle.

Come to think of it, progress in research is somewhat similar to human growth. There is no definition of an incredible person, but incredible people do exist, and they are somehow different from other people. By getting out of stereotypes and be full of ideas in our research, I am trying to realize the "half learning, half teaching" philosophy of Yukichi Fukuzawa in our laboratory so that both students and myself can grow uniquely. Knowledge of physics and mathematics is necessary, but more than that, you should have scientific curiosity and viewpoints that are different from other people.

However, as long as I work for Keio University, which emphasizes on jitsugaku (practical learning), I feel that we should also have a realistic dream. One thing I recently came up with is "no overtime work computer". When the performance of the computer improves and becomes 2 to 3 times faster, can people get to go home early? The answer is no, and I hear that the amount of computer work increases. Improvement of network technologies resulted in having to work at home after work. Why don't we get rid of this? If you have any good ideas, let's work on it together. I hope to hear from you.

Faculty Profile

Prof. Kohei Itoh, Faculty of Science and Technology

Prof. Itoh joined Keio from Yochisha Elementary School, and advanced to Futsubu School, Keio Senior High School and to the Faculty of Science and Technology at Keio University. He graduated in 1989. He obtained a Master's degree at University of California, Berkley in 1992, and a Ph.D. in 1994. The following year, he became Research Assistant at the Faculty of Science and Technology of Keio University. He then served as Assistant Professor and Associate Professor before becoming Professor in 2007. During this time, he also served in the Executive Board Committee of the Physical Society of Japan, and in the Executive Board Committee of the Institute of Pure and Applied Physics. His major research area is semiconductor physics. He was awarded the Japan IBM Science Award in 2006 for his research in creative electronics.

Student's Voice
Yasuo Shimizu, 3rd year level, doctoral program, Graduate School of Science and Technology

With a professional mind

Electronic appliances that surround us such as computers and cellular phones use semiconductors. We are one of the few laboratories in the world to focus on defining the physical phenomenon of silicon, king of semiconductors, with a new approach using isotopic material. Although it is thought that the semiconductor as a research theme has been exhausted, the material still holds unexplained features. Research is based on the autonomy of the individual, and if you work hard, you have a chance to lead the world creatively. Most of our research is related to maintaining our equipment, but because we put in great efforts, it is a real pleasure when we produce positive results. Prof. Itoh is enthusiastic about inviting students, researchers and professors from around the world, and because we conduct experiments and have discussions with them, communicating in English is a must and we also have many opportunities for cultural exchange. Students have many opportunities to expand their research activities beyond the campus, and our research environment is really appealing for students with a professional mind.

Center for Research Promotion | ResearchSEA
Further information:
http://www.researchsea.com
http://www.keio.ac.jp/english/keio_in_depth/research/008.html

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>