Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The elusive capacity of networks

16.05.2012
In its early years, information theory — which grew out of a landmark 1948 paper by MIT alumnus and future professor Claude Shannon — was dominated by research on error-correcting codes: How do you encode information so as to guarantee its faithful transmission, even in the presence of the corrupting influences engineers call "noise"?

Recently, one of the most intriguing developments in information theory has been a different kind of coding, called network coding, in which the question is how to encode information in order to maximize the capacity of a network as a whole. For information theorists, it was natural to ask how these two types of coding might be combined: If you want to both minimize error and maximize capacity, which kind of coding do you apply where, and when do you do the decoding?

What makes that question particularly hard to answer is that no one knows how to calculate the data capacity of a network as a whole — or even whether it can be calculated. Nonetheless, in the first half of a two-part paper, which was published recently in IEEE Transactions on Information Theory, MIT's Muriel Médard, California Institute of Technology's Michelle Effros and the late Ralf Koetter of the University of Technology in Munich show that in a wired network, network coding and error-correcting coding can be handled separately, without reduction in the network's capacity. In the forthcoming second half of the paper, the same researchers demonstrate some bounds on the capacities of wireless networks, which could help guide future research in both industry and academia.

A typical data network consists of an array of nodes — which could be routers on the Internet, wireless base stations or even processing units on a single chip — each of which can directly communicate with a handful of its neighbors. When a packet of data arrives at a node, the node inspects its addressing information and decides which of several pathways to send it along.

Calculated confusion

With network coding, on the other hand, a node scrambles together the packets it receives and sends the hybrid packets down multiple paths; at each subsequent node they're scrambled again in different ways. Counterintuitively, this can significantly increase the capacity of the network as a whole: Hybrid packets arrive at their destination along multiple paths. If one of those paths is congested, or if one of its links fails outright, the packets arriving via the other paths will probably contain enough information that the recipient can piece together the original message.

But each link between nodes could be noisy, so the information in the packets also needs to be encoded to correct for errors. "Suppose that I'm a node in a network, and I see a communication coming in, and it is corrupted by noise," Médard says. "I could try to remove the noise, but by doing that, I'm in effect making a decision right now that maybe would have been better taken by someone downstream from me who might have had more observations of the same source."

On the other hand, Médard says, if a node simply forwards the data it receives without performing any error correction, it could end up squandering bandwidth. "If the node takes all the signal it has and does not whittle down his representation, then it might be using a lot of energy to transmit noise," she says. "The question is, how much of the noise do I remove, and how much do I leave in?"

In their first paper, Médard and her colleagues analyze the case in which the noise in a given link is unrelated to the signals traveling over other links, as is true of most wired networks. In that case, the researchers show, the problems of error correction and network coding can be separated without limiting the capacity of the network as a whole.

Noisy neighbors

In the second paper, the researchers tackle the case in which the noise on a given link is related to the signals on other links, as is true of most wireless networks, since the transmissions of neighboring base stations can interfere with each other. This complicates things enormously: Indeed, Médard points out, information theorists still don't know how to quantify the capacity of a simple three-node wireless network, in which two nodes relay messages to each other via a third node.

Nonetheless, Médard and her colleagues show how to calculate upper and lower bounds on the capacity of a given wireless network. While the gap between the bounds can be very large in practice, knowing the bounds could still help network operators evaluate the benefits of further research on network coding. If the observed bit rate on a real-world network is below the lower bound, the operator knows the minimum improvement that the ideal code would provide; if the observed rate is above the lower bound but below the upper, then the operator knows the maximum improvement that the ideal code might provide. If even the maximum improvement would afford only a small savings in operational expenses, the operator may decide that further research on improved coding isn't worth the money.

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>