Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drones Learn To Search Forest Trails for Lost People

10.02.2016

Researchers at the University of Zurich, the Università della Svizzera italiana, and the University of Applied Sciences and Arts of Southern Switzerland have developed software enabling drones to autonomously detect and follow forest paths. With the new drones, missing persons can be found and rescued quickly in forests and mountain areas.

Every year, thousands of people lose their way in forests and mountain areas. In Switzerland alone, emergency centers respond to around 1,000 calls annually from injured and lost hikers. But drones can effectively complement the work of rescue services teams. Because they are inexpensive and can be rapidly deployed in large numbers, they substantially reduce the response time and the risk of injury to missing persons and rescue teams alike.


The newly developed software is based on an adaptive network.

UZH;USI;SUPSI


With the new drones, missing persons can be found and rescued quickly in forests and mountain areas.

UZH; USI; SUPSI

A group of researchers from the Dalle Molle Institute for Artificial Intelligence and the University of Zurich has developed artificial intelligence software to teach a small quadrocopter to autonomously recognize and follow forest trails. A premiere in the fields of artificial intelligence and robotics, this success means drones could soon be used in parallel with rescue teams to accelerate the search for people lost in the wild.

Breakthrough: Drone Flies Autonomously in Demanding Terrain

... more about:
»Artificial Intelligence »Robotics »drone

“While drones flying at high altitudes are already being used commercially, drones cannot yet fly autonomously in complex environments, such as dense forests. In these environments, any little error may result in a crash, and robots need a powerful brain in order to make sense of the complex world around them,” says Prof. Davide Scaramuzza from the University of Zurich.

The drone used by the Swiss researchers observes the environment through a pair of small cameras, similar to those used in smartphones. Instead of relying on sophisticated sensors, their drone uses very powerful artificial-intelligence algorithms to interpret the images to recognize man-made trails. If a trail is visible, the software steers the drone in the corresponding direction. “Interpreting an image taken in a complex environment such as a forest is incredibly difficult for a computer," says Dr. Alessandro Giusti from the Dalle Molle Institute for Artificial Intelligence. "Sometimes even humans struggle to find the trail!”

Successful Deep Neural Network Application

The Swiss team solved the problem using a so-called Deep Neural Network, a computer algorithm that learns to solve complex tasks from a set of “training examples,” much like a brain learns from experience. In order to gather enough data to “train” their algorithms, the team hiked several hours along different trails in the Swiss Alps and took more than 20 thousand images of trails using cameras attached to a helmet. The effort paid off: When tested on a new, previously unseen trail, the deep neural network was able to find the correct direction in 85% of cases; in comparison, humans faced with the same task guessed correctly 82% of the time.

Professor Juergen Schmidhuber, Scientific Director at the Dalle Molle Institute for Artificial Intelligence says: “Our lab has been working on deep learning in neural networks since the early 1990s. Today I am happy to find our lab’s methods not only in numerous real-world applications such as speech recognition on smartphones, but also in lightweight robots such as drones. Robotics will see an explosion of applications of deep neural networks in coming years.”

The research team warns that much work is still needed before a fully autonomous fleet will be able to swarm forests in search of missing people. Professor Luca Maria Gambardella, director of the “Dalle Molle Institute for Artificial Intelligence” in Lugano remarks: “Many technological issues must be overcome before the most ambitious applications can become a reality. But small flying robots are incredibly versatile, and the field is advancing at an unseen pace. One day robots will work side by side with human rescuers to make our lives safer." Prof. Davide Scaramuzza from the University of Zurich adds: “Now that our drones have learned to recognize and follow forest trails, we must teach them to recognize humans.”


Literature:

Alessandro Giusti, Jérôme Guzzi, Dan C. Ciresan, Fang-Lin He, Juan P. Rodríguez, Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni Di Caro, Davide Scaramuzza, and Luca M. Gambardella. A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. IEEE Robotics and Automation Letters. 9 February 2015 Doi: 10.1109/LRA.2015.2509024


Narrated video: https://youtu.be/umRdt3zGgpU

Website link: http://bit.ly/perceivingtrails


Contact:

Prof. Davide Scaramuzza
University of Zurich
Director of the Robotics and Perception Group
Institute of Informatics
Phone: +41 44 635 24 09
E-mail: sdavide@ifi.uzh.ch

Prof. Luca Maria Gambardella
Director of the Dalle Molle Institute for Artificial Intelligence
Phone: +41 58 666 66 63
E-mail: luca.gambardella@supsi.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/drohnen-suchen-selbstaendig-auf-waldwe...

Nathalie Huber | Universität Zürich

Further reports about: Artificial Intelligence Robotics drone

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>