Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drones Learn To Search Forest Trails for Lost People


Researchers at the University of Zurich, the Università della Svizzera italiana, and the University of Applied Sciences and Arts of Southern Switzerland have developed software enabling drones to autonomously detect and follow forest paths. With the new drones, missing persons can be found and rescued quickly in forests and mountain areas.

Every year, thousands of people lose their way in forests and mountain areas. In Switzerland alone, emergency centers respond to around 1,000 calls annually from injured and lost hikers. But drones can effectively complement the work of rescue services teams. Because they are inexpensive and can be rapidly deployed in large numbers, they substantially reduce the response time and the risk of injury to missing persons and rescue teams alike.

The newly developed software is based on an adaptive network.


With the new drones, missing persons can be found and rescued quickly in forests and mountain areas.


A group of researchers from the Dalle Molle Institute for Artificial Intelligence and the University of Zurich has developed artificial intelligence software to teach a small quadrocopter to autonomously recognize and follow forest trails. A premiere in the fields of artificial intelligence and robotics, this success means drones could soon be used in parallel with rescue teams to accelerate the search for people lost in the wild.

Breakthrough: Drone Flies Autonomously in Demanding Terrain

... more about:
»Artificial Intelligence »Robotics »drone

“While drones flying at high altitudes are already being used commercially, drones cannot yet fly autonomously in complex environments, such as dense forests. In these environments, any little error may result in a crash, and robots need a powerful brain in order to make sense of the complex world around them,” says Prof. Davide Scaramuzza from the University of Zurich.

The drone used by the Swiss researchers observes the environment through a pair of small cameras, similar to those used in smartphones. Instead of relying on sophisticated sensors, their drone uses very powerful artificial-intelligence algorithms to interpret the images to recognize man-made trails. If a trail is visible, the software steers the drone in the corresponding direction. “Interpreting an image taken in a complex environment such as a forest is incredibly difficult for a computer," says Dr. Alessandro Giusti from the Dalle Molle Institute for Artificial Intelligence. "Sometimes even humans struggle to find the trail!”

Successful Deep Neural Network Application

The Swiss team solved the problem using a so-called Deep Neural Network, a computer algorithm that learns to solve complex tasks from a set of “training examples,” much like a brain learns from experience. In order to gather enough data to “train” their algorithms, the team hiked several hours along different trails in the Swiss Alps and took more than 20 thousand images of trails using cameras attached to a helmet. The effort paid off: When tested on a new, previously unseen trail, the deep neural network was able to find the correct direction in 85% of cases; in comparison, humans faced with the same task guessed correctly 82% of the time.

Professor Juergen Schmidhuber, Scientific Director at the Dalle Molle Institute for Artificial Intelligence says: “Our lab has been working on deep learning in neural networks since the early 1990s. Today I am happy to find our lab’s methods not only in numerous real-world applications such as speech recognition on smartphones, but also in lightweight robots such as drones. Robotics will see an explosion of applications of deep neural networks in coming years.”

The research team warns that much work is still needed before a fully autonomous fleet will be able to swarm forests in search of missing people. Professor Luca Maria Gambardella, director of the “Dalle Molle Institute for Artificial Intelligence” in Lugano remarks: “Many technological issues must be overcome before the most ambitious applications can become a reality. But small flying robots are incredibly versatile, and the field is advancing at an unseen pace. One day robots will work side by side with human rescuers to make our lives safer." Prof. Davide Scaramuzza from the University of Zurich adds: “Now that our drones have learned to recognize and follow forest trails, we must teach them to recognize humans.”


Alessandro Giusti, Jérôme Guzzi, Dan C. Ciresan, Fang-Lin He, Juan P. Rodríguez, Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni Di Caro, Davide Scaramuzza, and Luca M. Gambardella. A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. IEEE Robotics and Automation Letters. 9 February 2015 Doi: 10.1109/LRA.2015.2509024

Narrated video:

Website link:


Prof. Davide Scaramuzza
University of Zurich
Director of the Robotics and Perception Group
Institute of Informatics
Phone: +41 44 635 24 09

Prof. Luca Maria Gambardella
Director of the Dalle Molle Institute for Artificial Intelligence
Phone: +41 58 666 66 63

Weitere Informationen:

Nathalie Huber | Universität Zürich

Further reports about: Artificial Intelligence Robotics drone

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>