Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Communication Technology Helps Clear Path to Personalized Therapies

13.01.2009
Researchers at the Burnham Institute for Medical Research (Burnham) have shown that search algorithms used in digital communications can help scientists identify effective multi-drug combinations. The study, led by Giovanni Paternostro, M.D., Ph.D., was published in the December 26, 2008, issue of PLoS Computational Biology.

Using the stack sequential algorithm, which was developed for digital communications, the team of scientists searched for optimal drug combinations. This algorithm can integrate information from different sources, including biological measurements and model simulations. This differs from the classic systems biology approach by having search algorithms rather than explicit quantitative models as the central element. The variability of biological systems is the fundamental motivation for this strategy.

“Combination therapies have demonstrated efficacy in treating complex diseases such as cancer and hypertension, but it is difficult to identify safe and effective combination treatment regimens using only trial and error,” said Dr. Paternostro. “As personalized medicine moves from the present emphasis on diagnosis and prognosis to therapy, the problem of searching for optimal drug combinations uniquely suited to the genetic and molecular profile of each patient will need to be solved. This research is a first step in that direction.”

Current methodology for identifying effective combination therapies involves exhaustive testing. However, the exponential expansion of possibilities precludes exploring large combinations using this approach. For example, many chemotherapy regimens include six drugs from a pool of 100. A study that included all combinations (including partial combinations containing only some of these compounds) at three different doses would have to digest 8.9 x 10^11 possibilities. The problem requires a new approach rather than more efficient screening technology.

In the study, a small subset of the possible drug combinations identified using the algorithms were tested in two biological model systems. One system studied improvement in the physiological decline associated with aging in Drosophila melanogaster (fruit flies) and the other system tested for selective killing of cancer cells. In both cases, effective drug combinations were identified by combining the algorithm with biological tests.

“Our work was greatly helped by collaborators with expertise in medicine, engineering and physics from Burnham, University of California, San Diego and Michigan State University,” said Dr Paternostro. “We especially benefited from suggestions from Dr. Andrew Viterbi, inventor of the Viterbi algorithm so widely used in digital communications, who pointed to parallels between this biological problem and signal decoding.” Dr. Andrew Viterbi cofounded Linkabit Corporation and Qualcomm Inc., with Dr. Irwin Jacobs. He is currently the president of the venture capital firm, The Viterbi Group.

This work was funded by the Ellison Medical Foundation, National Institutes of Health and the National Science Foundation.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest growing research institutes in the country. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | Newswise Science News
Further information:
http://www.burnham.org

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>