Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Communication Technology Helps Clear Path to Personalized Therapies

13.01.2009
Researchers at the Burnham Institute for Medical Research (Burnham) have shown that search algorithms used in digital communications can help scientists identify effective multi-drug combinations. The study, led by Giovanni Paternostro, M.D., Ph.D., was published in the December 26, 2008, issue of PLoS Computational Biology.

Using the stack sequential algorithm, which was developed for digital communications, the team of scientists searched for optimal drug combinations. This algorithm can integrate information from different sources, including biological measurements and model simulations. This differs from the classic systems biology approach by having search algorithms rather than explicit quantitative models as the central element. The variability of biological systems is the fundamental motivation for this strategy.

“Combination therapies have demonstrated efficacy in treating complex diseases such as cancer and hypertension, but it is difficult to identify safe and effective combination treatment regimens using only trial and error,” said Dr. Paternostro. “As personalized medicine moves from the present emphasis on diagnosis and prognosis to therapy, the problem of searching for optimal drug combinations uniquely suited to the genetic and molecular profile of each patient will need to be solved. This research is a first step in that direction.”

Current methodology for identifying effective combination therapies involves exhaustive testing. However, the exponential expansion of possibilities precludes exploring large combinations using this approach. For example, many chemotherapy regimens include six drugs from a pool of 100. A study that included all combinations (including partial combinations containing only some of these compounds) at three different doses would have to digest 8.9 x 10^11 possibilities. The problem requires a new approach rather than more efficient screening technology.

In the study, a small subset of the possible drug combinations identified using the algorithms were tested in two biological model systems. One system studied improvement in the physiological decline associated with aging in Drosophila melanogaster (fruit flies) and the other system tested for selective killing of cancer cells. In both cases, effective drug combinations were identified by combining the algorithm with biological tests.

“Our work was greatly helped by collaborators with expertise in medicine, engineering and physics from Burnham, University of California, San Diego and Michigan State University,” said Dr Paternostro. “We especially benefited from suggestions from Dr. Andrew Viterbi, inventor of the Viterbi algorithm so widely used in digital communications, who pointed to parallels between this biological problem and signal decoding.” Dr. Andrew Viterbi cofounded Linkabit Corporation and Qualcomm Inc., with Dr. Irwin Jacobs. He is currently the president of the venture capital firm, The Viterbi Group.

This work was funded by the Ellison Medical Foundation, National Institutes of Health and the National Science Foundation.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest growing research institutes in the country. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | Newswise Science News
Further information:
http://www.burnham.org

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>