Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer simulations explain the limitations of working memory

Researchers at Karolinska Institutet (KI) have constructed a mathematical activity model of the brain´s frontal and parietal parts, to increase the understanding of the capacity of the working memory and of how the billions of neurons in the brain interact.

One of the findings they have made with this "model brain" is a mechanism in the brain´s neuronal network that restricts the number of items we can normally store in our working memories at any one time to around two to seven.

Working memory, which is our ability to retain and process information over short periods of time, is essential to most cognitive processes, such as thinking, language and planning. It has long been known that the working memory is subject to limitations, as we can only manage to "juggle" a certain number of mnemonic items at any one time. Functional magnetic resonance imagery (fMRI) has revealed that the frontal and parietal lobes are activated when a sequence of two pictures is to be retained briefly in visual working memory. However, just how the nerve cells work together to handle this task has remained a mystery.

The study, which is published in the journal PNAS, is based on a multidisciplinary project co-run by two research teams at KI led by professors Torkel Klingberg and Jesper Tegnér. Most of the work was conducted by doctors Fredrik Edin and Albert Compte, the latter of whom is currently principal investigator of the theoretical neurobiology group at IDIBAPS in Barcelona.

For their project, the researchers used techniques from different scientific fields, applying them to previously known data on how nerve cells and their synapses function biochemically and electrophysiologically. They then developed, using mathematical tools, a form of virtual or computer simulated model brain. The computations carried out with this "model brain" were tested using fMRI experiments, which allowed the researchers to confirm that the computations genuinely gave answers to the questions they asked.

"It´s like a computer programme for aircraft designers," says Fredrik Edin, PhD in computational neuroscience. "Before testing the design for real, you feed in data on material and aerodynamics and so on to get an idea of how the plan´s going to fly."

With their model brain, the team was able to discover why working memory is only capable of retaining between two and seven different pictures simultaneously. As working memory load rises, the active neurons in the parietal lobe increasingly inhibit the activity of surrounding cells. The inhibition of the inter-neuronal impulses eventually becomes so strong that it prevents the storage of additional visual input, although it can be partly offset through the greater stimulation of the frontal lobes. This leads the researchers to suggest in their article that the frontal lobes might be able to regulate the memory capacity of the parietal lobes.

"The model predicts, for instance, that increased activation of the frontal lobes will improve working memory," continues Dr Edin. "This finding was also replicable in follow-up fMRI experiments on humans. Working memory is a bottleneck for the human brain´s capacity to process information. These results give us fresh insight into what the bottleneck consists of."

Fredrik Edin, Torkel Klingberg, Pär Johansson, Fiona McNab, Jesper Tegnér & Albert Compte
Mechanism for top-down control of working memory capacity
PNAS, online early edition 30 March - 3 April 2009.

Katarina Sternudd | EurekAlert!
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>