Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model improves ultrasound image

05.11.2008
Doctors use diagnostic sonography or ultrasound to visualise organs and other internal structures of the human body.

Dutch researcher Koos Huijssen has developed a computer model that can predict the sound transmission of improved designs for ultrasound instruments. The computer model is capable of processing large quantities of data and can be run on both a PC and a parallel supercomputer. Erasmus University Medical Centre and Oldelft Ultrasound are now using this program to design a new sonographic transducer.

Koos Huijssen went in search of a computer model that could predict the behaviour of ultrasonic waves. Over the past ten years, the images produced by ultrasound or sonography have been vastly improved by making partial use of the nonlinear nature of acoustic waves. Thanks to these developments ultrasound can now be used for a larger group of patients.

Further improvements could be realised by refining the sonography equipment, the transducer that generates the ultrasound and the imaging method. However, this requires a computer model that can accurately predict the transmission of ultrasound. With funding from Technology Foundation STW, Huijssen could develop a model which makes calculations over a three-dimensional area that is larger than existing computer models can handle.

The major challenges in producing such a model are the enormous complexity of the problem and dealing with the required storage capacity and processing power. The model was developed in cooperation with the company VORtech Computing and it has an excellent level of performance.

Kim van den Wijngaard | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7KDDKP_Eng

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>