Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Computing, Data Policy on Track to “Democratize” Satellite Mapping

28.03.2011
Far-sighted data policy and cloud computing are leading to the “democratization of satellite mapping,” one expert says — and the payoff will be wider access to information about the earth via platforms such as the new Google Earth Engine, a planetary-scale platform for environmental data and analysis.

That is the view of South Dakota State University professor Matt Hansen, one of several scientists who worked with Google to launch Google Earth Engine. The new technology was showcased at the annual meeting of the United Nations Framework Convention on Climate Change in Cancun, Mexico, in December 2010.

Hansen, the co-director of the Geographic Information Science Center of Excellence at SDSU, said that up until now, analyzing remote sensing data from satellites has required a hefty investment in infrastructure and lots of training. But not anymore. New policies by the U.S. Geological Survey are making satellite images available for free. That change in policy, paired with the cloud-computing capability offered by organizations such as Google, is making it possible for ordinary people to analyze satellite imagery without having expensive equipment.

“Eventually — soon, I expect — they’ll have the entire Landsat archive online at Google. And they’ll have the cloud computing capability to process all the data,” Hansen said. “This is an incredible advantage in terms of generating the value-added products that we create for quantifying deforestation, natural hazards, cropland area, urbanization, you name it.”

Google Earth Engine was one of the innovative ideas unveiled at the Cancun climate talks. Hansen and postdoctoral researcher Peter Potapov of SDSU worked with Google to help process more than 50,000 images in order to produce a detailed map of Mexico to demonstrate the technology.

"We are very excited about our collaboration with Dr. Matt Hansen and SDSU,” said Rebecca Moore, engineering manager for Google Earth Outreach and Google Earth Engine. “We're hopeful that the combination of our technology and his deep scientific expertise will contribute to a better understanding of the earth and its dynamics."

Hansen noted that the technology is a response to a far-sighted decision by the U.S. Geological Survey to make satellite imagery data available for free. Just two years ago, a user would have had to spend $32 million simply to get access to the images Google and Hansen’s SDSU team processed.

“It’s not just Google. It’s good data policy. When the U.S. Geological Survey made the data free, all of a sudden this whole new world opened up to us. It implies that you have to have to have cloud computing capability to mine all of those data,” Hansen said. “Landsat imagery went from a cost model to a free basis, so the data that we use as our main monitoring observation, 30-meter Landsat data, went from $600 per image — which is around 185 kilometers by 185 kilometers — to being free. So instead of begging and borrowing for money to work with, say, a couple hundred images, we now can access tens of thousands of images. Once you do that, you need to upscale your computing.”

Improved publicly available processing tools will “democratize” the processing of satellite data, as more people become engaged in working with the data. But, he noted, that will require more collaboration between academics, government scientists, and perhaps private industry in processing and characterizing the satellite data sets.

“There is always a chance that uninformed people will try their hand at making advanced products, and they’ll be able to do it because they will not have to have the infrastructure behind it,” Hansen said. “That’s going to put the onus on accuracy. We’re going to have to put a lot of money into accuracy assessment or what we call validation — having data sets that help determine the accuracy of the map products. This will ensure that the most accurate information on how the earth is changing is used in making policy decisions.”

Lance Nixon
605-688-5444
Lance.Nixon@sdstate.edu
Professor Matt Hansen, co-director, Geographic Information Science Center of Excellence
South Dakota State University
605-688-6591
Matthew.Hansen@sdstate.edu

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>