Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Computing, Data Policy on Track to “Democratize” Satellite Mapping

28.03.2011
Far-sighted data policy and cloud computing are leading to the “democratization of satellite mapping,” one expert says — and the payoff will be wider access to information about the earth via platforms such as the new Google Earth Engine, a planetary-scale platform for environmental data and analysis.

That is the view of South Dakota State University professor Matt Hansen, one of several scientists who worked with Google to launch Google Earth Engine. The new technology was showcased at the annual meeting of the United Nations Framework Convention on Climate Change in Cancun, Mexico, in December 2010.

Hansen, the co-director of the Geographic Information Science Center of Excellence at SDSU, said that up until now, analyzing remote sensing data from satellites has required a hefty investment in infrastructure and lots of training. But not anymore. New policies by the U.S. Geological Survey are making satellite images available for free. That change in policy, paired with the cloud-computing capability offered by organizations such as Google, is making it possible for ordinary people to analyze satellite imagery without having expensive equipment.

“Eventually — soon, I expect — they’ll have the entire Landsat archive online at Google. And they’ll have the cloud computing capability to process all the data,” Hansen said. “This is an incredible advantage in terms of generating the value-added products that we create for quantifying deforestation, natural hazards, cropland area, urbanization, you name it.”

Google Earth Engine was one of the innovative ideas unveiled at the Cancun climate talks. Hansen and postdoctoral researcher Peter Potapov of SDSU worked with Google to help process more than 50,000 images in order to produce a detailed map of Mexico to demonstrate the technology.

"We are very excited about our collaboration with Dr. Matt Hansen and SDSU,” said Rebecca Moore, engineering manager for Google Earth Outreach and Google Earth Engine. “We're hopeful that the combination of our technology and his deep scientific expertise will contribute to a better understanding of the earth and its dynamics."

Hansen noted that the technology is a response to a far-sighted decision by the U.S. Geological Survey to make satellite imagery data available for free. Just two years ago, a user would have had to spend $32 million simply to get access to the images Google and Hansen’s SDSU team processed.

“It’s not just Google. It’s good data policy. When the U.S. Geological Survey made the data free, all of a sudden this whole new world opened up to us. It implies that you have to have to have cloud computing capability to mine all of those data,” Hansen said. “Landsat imagery went from a cost model to a free basis, so the data that we use as our main monitoring observation, 30-meter Landsat data, went from $600 per image — which is around 185 kilometers by 185 kilometers — to being free. So instead of begging and borrowing for money to work with, say, a couple hundred images, we now can access tens of thousands of images. Once you do that, you need to upscale your computing.”

Improved publicly available processing tools will “democratize” the processing of satellite data, as more people become engaged in working with the data. But, he noted, that will require more collaboration between academics, government scientists, and perhaps private industry in processing and characterizing the satellite data sets.

“There is always a chance that uninformed people will try their hand at making advanced products, and they’ll be able to do it because they will not have to have the infrastructure behind it,” Hansen said. “That’s going to put the onus on accuracy. We’re going to have to put a lot of money into accuracy assessment or what we call validation — having data sets that help determine the accuracy of the map products. This will ensure that the most accurate information on how the earth is changing is used in making policy decisions.”

Lance Nixon
605-688-5444
Lance.Nixon@sdstate.edu
Professor Matt Hansen, co-director, Geographic Information Science Center of Excellence
South Dakota State University
605-688-6591
Matthew.Hansen@sdstate.edu

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>