Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-Inspired Computer Architectures

22.12.2010
European Commission provides funding of 8.5 million euros for the international “BrainScaleS” project

The development of novel brain-inspired computer architectures is the objective of the research work envisaged by a scientific consortium consisting of 13 work groups from 6 European countries. Neurobiologists, computer scientists, physicists and engineers have joined forces to embark on a project called “BrainScaleS”. In the period 2011-2014, this integrated venture will receive total funding of 8.5 million euros from the European Commission. Project coordinator is Karlheinz Meier of Heidelberg University’s Kirchhoff Institute of Physics.

The scientists involved in the BrainScaleS consortium intend to devise, build and operate a “neuromorphic” research facility. This term refers to systems based on electronic models of neural microcircuits. Their design is geared to the neurobiological structures of the nervous system, which means that they function quite differently from the numeric simulations of conventional high-performance computers. “Neuromorphic systems should display a number of important properties of the brain,” Karlheinz Meier explains. “That includes fault tolerance, learning capability and very low energy consumption.”

The planned neuromorphic facility will be able to implement architectures of any kind by connecting up over a million electronically and biologically inspired neurons with almost a billion adaptive synapses. The system will work about 10,000 times faster than its biological model and is thus an ideal device for investigating potential network architectures. User access via the Internet is planned. The experiments envisaged so far include not only biologically realistic perception-action loops but also experiments on the processing of generic, non-biological data.

The BrainScaleS project builds on a precursor project successfully completed in 2010 and also coordinated by Karlheinz Meier: “Fast Analog Computing with Emergent Transient States” (FACETS). In the new project, Heidelberg takes the lead in devising, constructing and operating the neuromorphic facility. BrainScaleS receives funding in the framework of the European Union’s “Future and Emerging Technologies” programme (FET), which focuses on the development of pioneering technologies. The work done in Heidelberg will be financed in the amount of 2 million euros.

For more information on BrainScaleS, go to the project website at http://www.BrainScaleS.eu

Contact:
Prof. Dr. Karlheinz Meier
Kirchhoff Institute of Physics
phone: +49 6221 549831
meierk@kip.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.BrainScaleS.eu
http://www.uni-heidelberg.de

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>