Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-Inspired Computer Architectures

22.12.2010
European Commission provides funding of 8.5 million euros for the international “BrainScaleS” project

The development of novel brain-inspired computer architectures is the objective of the research work envisaged by a scientific consortium consisting of 13 work groups from 6 European countries. Neurobiologists, computer scientists, physicists and engineers have joined forces to embark on a project called “BrainScaleS”. In the period 2011-2014, this integrated venture will receive total funding of 8.5 million euros from the European Commission. Project coordinator is Karlheinz Meier of Heidelberg University’s Kirchhoff Institute of Physics.

The scientists involved in the BrainScaleS consortium intend to devise, build and operate a “neuromorphic” research facility. This term refers to systems based on electronic models of neural microcircuits. Their design is geared to the neurobiological structures of the nervous system, which means that they function quite differently from the numeric simulations of conventional high-performance computers. “Neuromorphic systems should display a number of important properties of the brain,” Karlheinz Meier explains. “That includes fault tolerance, learning capability and very low energy consumption.”

The planned neuromorphic facility will be able to implement architectures of any kind by connecting up over a million electronically and biologically inspired neurons with almost a billion adaptive synapses. The system will work about 10,000 times faster than its biological model and is thus an ideal device for investigating potential network architectures. User access via the Internet is planned. The experiments envisaged so far include not only biologically realistic perception-action loops but also experiments on the processing of generic, non-biological data.

The BrainScaleS project builds on a precursor project successfully completed in 2010 and also coordinated by Karlheinz Meier: “Fast Analog Computing with Emergent Transient States” (FACETS). In the new project, Heidelberg takes the lead in devising, constructing and operating the neuromorphic facility. BrainScaleS receives funding in the framework of the European Union’s “Future and Emerging Technologies” programme (FET), which focuses on the development of pioneering technologies. The work done in Heidelberg will be financed in the amount of 2 million euros.

For more information on BrainScaleS, go to the project website at http://www.BrainScaleS.eu

Contact:
Prof. Dr. Karlheinz Meier
Kirchhoff Institute of Physics
phone: +49 6221 549831
meierk@kip.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.BrainScaleS.eu
http://www.uni-heidelberg.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>