Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BBS Team Evaluating Facial Recognition Techniques

16.09.2010
Rapid improvements in facial-recognition software mean airport security workers might one day know with near certainty whether they’re looking at a stressed-out tourist or staring a terrorist in the eye.

A research team led by Dr. Alice O’Toole, a professor in The University of Texas at Dallas’ School of Behavioral and Brain Sciences, is evaluating how well these rapidly evolving recognition programs work. The researchers are comparing the rates of success for the software to the rates for non-technological, but presumably “expert” human evaluation.

“The government is interested in spotting people who might pose a danger,” O’Toole said. “But they also don’t want to have too many false alarms and detain people who are not real risks.”

Dr. Alice O’Toole is leading a team that is examining where facial-recognition algorithms succeed and where they come up short.

The studies in the Face Perception and Research Laboratories are funded by the U.S. Department of Defense. The agency is seeking the most accurate and cost-effective way to recognize individuals who might pose a security risk to the nation.

Algorithms – formulae that allow computers to “recognize” faces - vary greatly among the various software developers, and most have not faced real-world challenges. So O’Toole and her team are carefully examining where the algorithms succeed and where they come up short. They’re using point-by-point comparisons to examine similarities in millions of faces captured within a database, and then comparing results to algorithm determinations.

In the studies, humans and algorithms decided whether pairs of face images, taken under different illumination conditions, were pictures of the same person or different people.

The UT Dallas researchers have worked with algorithms that match up still photos and are now moving into comparisons involving more challenging images, such as faces caught on video or photographs taken under poor lighting conditions.

“Many of the images that security people have to work with are not high-quality,” O’Toole said. “They may be taken off closed-circuit television or other low-resolution equipment.”

The study is likely to continue through several more phases, as more and better software programs are presented for review. So far, the results of man vs. machine have been a bit surprising, O’Toole said.

“In fact, the very best algorithms performed better than humans at identifying faces,” she said. “Because most security applications rely primarily on human comparisons up until now, the results are encouraging about the prospect of using face recognition software in important environments.”

The real success comes when the software is combined with human evaluation techniques, O’Toole said. By using the software to spot potential high-risk individuals and then combining the software with the judgment of a person, nearly 100 percent of matching faces were identified, O’Toole said.

The researchers also are interested in the role race plays in humans’ ability to spot similar facial features. O’Toole said many studies indicate individuals almost always recognize similarities among members of their own race with more accuracy. But there is little research evaluating how technological tools differ in recognizing faces of varying races.

In a paper to be published soon in ACM Transactions on Applied Perception, O’Toole reports that the “other race effect” occurs for algorithms tested in a recent international competition for state-of-the-art face recognition algorithms. The study involved a Western algorithm made by fusing eight algorithms from Western countries and an East Asian algorithm made by fusing five algorithms from East Asian countries. At the low false-accept rates required for most security applications, the Western algorithm recognized Caucasian faces more accurately than East Asian faces, and the East Asian algorithm recognized East Asian faces more accurately than Caucasian faces.

Next, using a test that spanned all false-alarm rates, O’Toole’s team compared the algorithms with humans of Caucasian and East Asian descent matching face identity in an identical stimulus set. In this case, both algorithms performed better on the Caucasian faces, the “majority" race in the database. The Caucasian face advantage was far larger for the Western algorithm than for the East Asian algorithm.

Humans showed the standard other-race effect for these faces, but showed more stable performance than the algorithms over changes in the race of the test faces. These findings indicate that state-of-the-art face-recognition algorithms, like humans, struggle with “other-race face” recognition, O’Toole said.

The companies that develop the most reliable facial recognition software are likely to reap big profits down the line. Although governments may be their most obvious clients, there is also a great deal of interest from other major industries.

“Casinos have been some of the first users of face recognition software,” O’Toole said. “They obviously want to be able to spot people who are counting cards and trying to cheat the casino.”

O’Toole collaborated on the research with Dr. P. Jonathon Phillips of the National Institute of Standards and Technology, Dr. Fang Jiang of the University of Washington, and Dr. Abhijit Narvekar of Alcon Labs.

Emily Martinez | EurekAlert!
Further information:
http://www.dallas.edu

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>