Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From intelligent knee braces to anti-theft backpacks

26.01.2016

Fraunhofer IZM showcases novel wearable applications

Integrating electronic assemblies can level up the capabilities of textiles with many versatile functions, from monitoring to lighting and beyond. With 15 years of expertise in the field, the Fraunhofer IZM has created a universe of innovative applications for textiles. The 10th Wearable Technologies Conference 2016 in Munich (ICM, booth 32) will showcase some of the highlights.


Coat with fully integrated 64 smart pixel in-fabric display

Volker Mai / Fraunhofer IZM


Backpacks with built-in anti-pickpocketing alarms

Elisabeth Grebe/ Skarabeos

The expo will premier a textile stretch sensor for soft knee braces. The on-going MOTEX research project has led to the development of a stretchable fabric that can track the flexion of the brace with exceptional precision.

The technology is particularly promising for patients with artificial knee joints: The innovative system notices any unnecessary or unhealthy movements or friction, and can notify the patient or surgeon immediately via cloud or smartphone connection, The sensor concept and miniature monitoring technology was developed by Fraunhofer IZM in collaboration with the Belgian research institutes Centexbel and Mobilab.

Similar technologies are being used in highly flexible and deformable LED displays. The 7-segment display developed as part of the SINETRA project is intended to provide optical warning signals in extreme environments, with possible applications including the protective gear worn by firemen.

These displays employ Stretchable Circuit Boards (SCB) made from polyurethane, keeping the often irreconcilable worlds of textile and electronics production separate until the very final stage, when the laundry and ironing-proof electronics are laminated onto the host fabric – in this case fleece.

Textile integration technologies also pave the way for a versatile range of security applications. The Fraunhofer IZM has teamed up with the Austrian company Skarabeos to introduce to the world the prototype of a backpack that can actively prevent pickpocketing.

A sensor integrated into the fabric itself sets off an alarm before the backpack is opened by those with criminal intent. The sensor can also use Bluetooth to hook up with an application on the wearer’s smartphone and execute location-based actions, such as locking the bag in areas known as pickpocketing hotspots.

The spotlight will also fall on one guaranteed eye-catcher: a jacket with textile-integrated displays that can change colour and pattern or act as a dynamic medium to display information. Conventional display matrixes are typically controlled with highly complex wiring.

This cannot be replicated when using textile fabrics, as current production processes would not allow the precision required for the purpose. The solution is provided by I²C busses that use just four conductors to establish a parallel connection of the Smart Pixels.

The Smart Pixels are miniature circuit boards mounted with a RGB LED and four passive SMD modules. Embedding technology is used to integrate the backbone of each pixel – I²C bus LED drivers in a QFN package – in the circuit board. The tiny form factor of the Smart Pixels keeps the host fabric as soft and flexible as it should be.

Visitors can experience all of these prototypes from up close in the expo area of the 10th Wearable Technologies Conference 2016 in Munich (ICM, booth 32).

Weitere Informationen:

http://www.izm.fraunhofer.de/en/news_events/tech_news/fraunhofer-izm-zeigt-live-...

Georg Weigelt | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

More articles from Event News:

nachricht Plants are networkers
19.06.2017 | Institut für Pflanzenbiochemie

nachricht Digital Survival Training for Executives
13.06.2017 | NIT Northern Institute of Technology Management gGmbH

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>