Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ITS European Congress: Traffic Warning and Information Platform

17.05.2013
At the ITS European Congress in Dublin (June 4-7, 2013), Fraunhofer ESK and RUETZ Technologies will be presenting an intelligent traffic warning system based on car-to-x communication technology.

Blinking lights on the roadside warn drivers of the precise location of danger spots such as heavy fog, accidents and traffic congestion. Provided the vehicle is equipped with the car-to-x technology, additional danger warnings are displayed directly on the instrument panel. The system is based on the ezCar2X framework developed by Fraunhofer ESK.

Even with an excellent road and traffic warning infrastructure, the warnings that drivers receive regarding local danger situations are often insufficient or too late. This results in avoidable accidents. When available, today's control systems are positioned at 1 to 2 kilometer intervals and are controlled from a central system. When danger situations suddenly occur, the warnings are thus delayed. In addition, the system can only display those danger situations that are located within the 1 to 2 kilometer interval.

To address this issue, Fraunhofer ESK, RUETZ Technologies and Transver joined forces to develop a system that quickly generates warnings tailored to the driver's situation. Because it relies on a decentralized danger recognition concept, the solution reacts faster and more precise than existing systems. An analysis furthermore revealed that the blinking lights deployed by the research team intuitively increase the driver's awareness level compared to existing traffic control systems.

Merging of vehicle and roadside unit sensor data
The data that the decentralized danger recognition system needs already exists. Vehicle sensors can send data such as the car's position, speed and driving direction to so-called roadside units (RSUs). Infrastructure sensors on the edge of the road simultaneously communicate with the RSUs to send driving condition information such as fog, snow or heavy rain conditions that can affect visibility. Radar technology is used to record the speed and direction of passing vehicles. This flexible combination of infrastructure and vehicle systems results in a cooperative traffic warning system.

The RSUs deployed for the project were developed with the Fraunhofer ESK ARTiS prototyping platform. Communication is carried out using the ETSI ITS-G5 technology developed specifically for car-to-x communication. The overall application is based on the ezCar2x framework developed by Fraunhofer ESK, which enables the rapid prototyping of cooperative driver assistance systems.

Real-time traffic conditions

Depending on the analysis of the traffic situation, drivers receive a location-based warning that is generated in two ways. For vehicles equipped with car-to-x communication, warnings are displayed directly on the instrument panel. In addition, blinking roadside lights warn all drivers of the precise location of danger spots in real-time.

Fraunhofer ESK and RUETZ Technologies will join ITS Germany at its exhibit booth at the 2013 ITS European Congress in Dublin to demonstrate the functionality of the system in accident situations. The new system also serves as a prerequisite for the creation of a fully-networked road infrastructure.

| Fraunhofer Einrichtung
Further information:
http://www.esk.fraunhofer.de/de/medien.html

More articles from Event News:

nachricht Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting
13.02.2017 | Kuratorium für die Tagungen der Nobelpreisträger in Lindau e.V.

nachricht Complex Loading versus Hidden Reserves
10.02.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>