Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wolves, moose and biodiversity: An unexpected connection

03.11.2009
Moose eat plants; wolves kill moose. What difference does this classic predator-prey interaction make to biodiversity?

A large and unexpected one, say wildlife biologists from Michigan Technological University. Joseph Bump, Rolf Peterson and John Vucetich report in the November 2009 issue of the journal Ecology that the carcasses of moose killed by wolves at Isle Royale National Park enrich the soil in "hot spots" of forest fertility around the kills, causing rapid microbial and fungal growth that provide increased nutrients for plants in the area.

"This study demonstrates an unforeseen link between the hunting behavior of a top predator—the wolf—and biochemical hot spots on the landscape," said Bump, an assistant professor in Michigan Tech's School of Forest Resources and Environmental Science and first author of the research paper. "It's important because it illuminates another contribution large predators make to the ecosystem they live in and illustrates what can be protected or lost when predators are preserved or exterminated."

Bump and his colleagues studied a 50-year record of more than 3,600 moose carcasses at Isle Royale. They measured the nitrogen, phosphorus and potassium levels in the soil at paired sites of wolf-killed moose carcasses and controls. They also analyzed the microbes and fungi in the soil and the leaf tissue of large-leaf aster, a common native plant eaten by moose in eastern and central North America.

They found that soils at carcass sites had 100 to 600 percent more inorganic nitrogen, phosphorus and potassium than soil from surrounding control sites. Carcass sites also had an average of 38 percent more bacterial and fungal fatty acids, evidence of increased growth of bacteria and fungi.

The nitrogen levels in plants growing on the carcass sites was from 25 to 47 percent higher than the levels at the control sites. Since large herbivores, like moose, are attracted to nitrogen-rich plants, the carcass sites become foraging sites, further supplementing soil nutrients from the urine and feces of the animals eating there.

"I was initially skeptical that it would be possible to detect something as diffuse in the forest floor as nutrients from dead animals," said Peterson, who has been studying the wolves and moose of Isle Royale for decades. "It was gratifying to see Joseph succeed in following animal-derived nutrients back into plants to enrich them in protein, ready to be eaten again."

Even moose killed in winter and mostly consumed produce substantial nutrient hot spots, Bump reports. "At the landscape scale, long-term carcass deposition patterns could influence forest dynamics by shifting competitive relationships among tree seedlings through changes in the nutrient concentrations in their growth environment," he writes.

Bump has observed similar effects on the soil and plant life at elk carcass sites in Yellowstone National Park, another place where wolves are predators and large herbivores are their prey. And he adds that on the Arctic tundra, where soil nutrients are limited, others have found that the impact of a muskox carcass on surrounding vegetation is dramatic even after 10 years.

"Predation and nutrient cycling are two of the most important of all ecological processes, but they seem just about completely unrelated to one another," observes Vucetich. Also on the faculty of Michigan Tech's School of Forest Resources and Environmental Science, Vucetich conducts an annual winter study of the wolves and moose of Isle Royale. "Bump has led us to understand how these two seemingly disparate processes—predation and nutrient cycling—are in fact connected and connected in a most interesting way."

The strong and unexpected connections between wolves, moose and the biogeochemistry of their ecosystem are important to policy makers involved in predator management and to a public increasingly concerned about conservation, Bump suggests.

The research was supported by the National Science Foundation and the US Environmental Protection Agency.

Michigan Technological University (mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Jennifer Donovan | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>