Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widely adopted indicator of fisheries health questioned

18.11.2010
Inaccurate conclusions may have been reached in many ecosystems

The most widely adopted measure for assessing the state of the world's oceans and fisheries led to inaccurate conclusions in nearly half the ecosystems where it was applied.

The new analysis was performed by an international team of fisheries scientists, and is reported in this week's issue of the journal Nature.

"Applied to individual ecosystems it's like flipping a coin; half the time you get the right answer and half the time you get the wrong answer," said Trevor Branch, a University of Washington (UW) aquatic and fisheries scientist.

"Monitoring all the fish in the sea would be an enormous, and impossible, task," said Henry Gholz, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which co-funded the research with NSF's Division of Ocean Sciences.

"This study makes clear that the most common indicator, average catch trophic level, is a woefully inadequate measure of the status of marine fisheries."

In 1998, the journal Science published a groundbreaking paper that was the first to use trends in the trophic levels of fish that were caught to measure the health of world fisheries.

The trophic level of an organism shows where it fits in food webs, with microscopic algae at a trophic level of one and large predators such as sharks, halibut and tuna at a trophic level around four.

The 1998 paper relied on four decades of catch data and averaged the trophic levels of what was caught.

The authors determined that those averages were declining over time and warned we were "fishing down the food web" by overharvesting fish at the highest trophic levels and then sequentially going after fish farther down the food web.

Twelve years later newly compiled data has emerged that considers the numbers and types of fish that actually live in these ecosystems, as well as catch data.

The new analysis reveals weaknesses in assessing ecosystem health from changes in the trophic levels of what is being caught.

"This is important because that measure is the most widely adopted indicator by which to determine the overall health of marine ecosystems," said Branch, lead author of the Nature paper.

Those involved with the U.N.'s Convention on Biodiversity, for instance, chose to use the average trophic level of fish caught as the main measure of global marine diversity.

An example of the problem with the measure is in the Gulf of Thailand where the average trophic level of what is being caught is rising, which should indicate improving ecosystem health according to proponents of that measure.

Instead, it turns out fish at all levels have declined tenfold since the 1950s because of overharvesting.

"The measure only declines if fisheries aimed for top predators first, but for the Gulf of Thailand the measure fails because fisheries first target mussels and shrimp near the bottom of the food web, before shifting to fish higher up," Branch said.

Including the Gulf of Thailand, Branch found that changes in the average trophic levels of what was being caught, and what was found when fish populations were surveyed, differed in 13 of the 29 trawl surveys from 14 ecosystems.

Trawl surveys, generally done from research vessels, count the kinds and abundance of fish and are repeated over time to reveal trends.

Branch and co-authors are the first to combine many trawl surveys for analysis--no one had combined more than a handful before.

The trawl survey data came from efforts started three years ago by fisheries scientists and ecologists, who gathered at the NSF-supported National Center for Ecological Analysis and Synthesis (NCEAS) in Santa Barbara, Calif.

They brought together world-wide catch data, stock assessments, scientific trawl surveys, small-scale fishery data and modeling results.

What emerged is the most comprehensive set of data yet for fisheries researchers and managers.

It paints a different picture from previous catch data and has revealed another major new finding: on a global scale humans don't appear to be fishing down the food web, Branch said.

"The research shows the importance of synthesis to furthering an understanding of fisheries impacts and management strategies," said Phillip Taylor, section head in NSF's Division of Ocean Sciences.

"For complex ecosystem interactions, answers can only come from repeated scrutiny of data, and comparisons of different scientific methods and systems," said Taylor. "This synthesis points to a path forward to evaluate fisheries influences on ocean ecosystems."

The new catch data reveal that, following declines during the 1970s in the average trophic levels of fish being caught, catches of fish at all trophic levels have generally gone up since the mid-80s.

Included are high-trophic predators such as bigeye tuna, skipjack tuna and blue whiting.

"Globally we're catching more of just about everything," Branch said. "Therefore relying on changes in the average trophic level of fish being caught won't tell us when fishing is sustainable--or if it is leading to collapse."

When harvests of everything increase equally, the average trophic level of what is caught remains steady. The same is true if everything is overfished to collapse. Both scenarios were modeled as part of the analysis.

"The 1998 paper was tremendously influential in gathering together global data on catches and trophic levels, and it warned about fishing impacts on ecosystems," Branch said.

"Our new data from trawl surveys and fisheries assessments now tell us that catches weren't enough. In the future we will need to target limited resources in the best way, focusing on species that are especially vulnerable to fishing and developing indicators that reflect fish abundance, biodiversity and marine ecosystem health.

"Only through such efforts can we reliably assess human impacts on marine ecosystems."

"We conducted the first large-scale test of whether changes in the average trophic levels of what's caught is a good indicator of ecosystem status," said Beth Fulton, co-author of the paper and an ecosystem modeler with the Commonwealth Scientific and Industrial Research Organisation, Australia.

"Catch data might be easiest to get, but that doesn't help if what it tells us is wrong," said Fulton. "Instead we really need to look directly at what the ecosystems are doing."

Co-authors of the paper are Reg Watson and Grace Pablico, University of British Columbia; Simon Jennings, Centre for Environment, Fisheries and Aquaculture Science and University of East Anglia, England; Carey McGilliard, University of Washington; Daniel Ricard, Dalhousie University in Halifax, Nova Scotia; and Sean Tracey, University of Tasmania, Australia.

The research also was supported by the Gordon and Betty Moore Foundation and the UW School of Aquatic and Fishery Sciences.

It used data from a National Center for Ecological Analysis and Synthesis working group; the stock assessment database funded by the Canadian Natural Sciences and Engineering Research Council; the Canadian Foundation for Innovation; and the Sea Around Us project funded by Pew Charitable Trust.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>