Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water Research Tackles Growing Grassland Threat: Trees

29.09.2014

Two Kansas State University biologists are studying streams to prevent tallgrass prairies from turning into shrublands and forests.

By looking at 25 years of data on the Konza Prairie Biological Station, Allison Veach, doctoral student in biology, Muncie, Indiana, and Walter Dodds, university distinguished professor of biology, are researching grassland streams and the expansion of nearby woody vegetation, such as trees and shrubs. They have found that burn intervals may predict the rate of woody vegetation expansion along streams.


Kansas State University

Walter Dodds, university distinguished professor of biology (pictured), and Allison Veach, doctoral student in biology, are researching grassland streams and the expansion of nearby woody vegetation. They have studied 25 years of data on the Konza Prairie Biological Station and found that increasing fire frequency reduces the rate of woody vegetation expansion.

Their latest research appears in the peer-reviewed journal PLOS ONE in an article "Fire and Grazing Influences on Rates of Riparian Woody Plant Expansion along Grassland Streams."

Grasslands in North America and across the globe are rapidly disappearing, Veach said, and woody plants are expanding and converting grasslands into forest ecosystems. This change in environment can affect stream hydrology and biogeochemistry, said Dodds, who has studied streams and watersheds on the Konza prairie for more than 20 years.

"This is an important issue regionally, because as trees expand into these grassland areas, people who are using grassland for cattle production have less grass for animals, too," Dodds said.

In their latest research, the biologists studied 25 years of aerial photography on Konza and observed the expansion of trees and shrubs in riparian areas, which include areas within 30 meters of streambeds. The researchers focused on three factors that affect grassland streams: burn intervals; grazers, such as bison; and the historical presence of woody vegetation.

Their analysis revealed an important finding: Burn intervals predicted the rate of woody vegetation expansion. Burning every one to two years slowed the growth of trees and shrubs, Veach said.

"Although we can reduce woody expansion by burning more frequently, we can't prevent it from occurring over time," Veach said. "Woody plant encroachment may not be prevented by fire alone."

The research shows the importance of burning to maintain the tallgrass prairie, Dodds said. While burning can help to slow the expansion of trees and shrubs, additional actions are need to maintain quickly disappearing grassland ecosystems.

"It's clear from this research that if you don't burn at all, these grassland streams basically are going to switch to forests and will not be grassland streams anymore," Dodds said.

Dodds and Veach also found that bison do not significantly affect woody vegetation expansion along streams. Previous Konza research has shown that bison do not spend significant time near stream areas, so they may not influence the growth of nearby trees and shrubs, Veach said.

Woody vegetation also may be expanding in grasslands because of more carbon dioxide in the atmosphere, Dodds said. Grasses and trees compete for carbon dioxide, and grasses are much better at conserving water and efficiently using carbon dioxide. As atmospheric carbon dioxide levels increase, it becomes easier for trees to gather carbon dioxide and gives them a growing advantage over grasses.

"The tallgrass prairie is almost nonexistent on the globe," Veach said. "In order for us to preserve tallgrass prairie, we need to look at woody encroachment because it has been an issue. Things like no fire or differences in climate change may allow woody plant species to competitively take over grasslands."

The biologists plan to continue studying water quality and quantity issues at Konza. Konza is an 8,600-acre tallgrass prairie ecological research site jointly owned by the university and The Nature Conservancy.

Veach and Dodds received research funding from the National Science Foundation's Konza Prairie Long-Term Ecological Research program and the Kansas Experimental Program to Stimulate Competitive Research. The research also involved Adam Skibbe at the University of Iowa.

Contact Information

Jennifer Torline Tidball
Science/Research writer
jtidball@k-state.edu
Phone: 785-532-0847
Mobile: 785-532-7355

Jennifer Torline Tidball | newswise
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>