Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Warmer climate makes Baltic more salty

Science has long believed that a warmer climate will increase river runoff to the Baltic Sea, thus making the inland sea less salty. However, a new extensive study from the University of Gothenburg reveals that the effect will probably be the opposite: climate change will reduce river runoff and increase salinity in the Baltic Sea.

“There could be major consequences for the Baltic’s sensitive ecosystem,” says researcher Daniel Hansson.

The Baltic is a young, brackish sea with a unique and sensitive ecosystem containing both marine and freshwater species. Researchers have been warning for many years that tiny changes in the salt content could have a major impact on the ecosystem. The basis for the argument has been that a warmer climate will increase river runoff and make the Baltic Sea less salty.

University of Gothenburg researchers, who have analysed 500 years’ worth of climate data, now say that the effect could instead be the opposite.

Observations since the 16th century
Researchers at the Department of Geosciences have been able to reconstruct the flow of freshwater to the Baltic Sea since the 16th century by analysing atmospheric observations from the past 500 years. The study, which has been published in the International Journal of Climatology, shows that in the past, warm periods have coincided with less freshwater in the Baltic Sea. If the climate becomes warmer in future, river runoff may also fall, leading to an increase in salinity.
Major regional differences
However, there may be major regional differences: “More freshwater runs off in the northern Baltic and Gulf of Finland when it’s warmer, while the opposite occurs in the southern Baltic. The reason for this is that a warmer climate leads to increased rainfall in the north and east and less rainfall in the south. Our study shows that the decrease in the south is greater than the increase in the north, which means that overall the water will be saltier,” says Daniel Hansson, researcher at the Department of Geosciences.
Ecosystem may be disturbed
The increase in salinity in the Baltic Sea may have a major impact on the sensitive ecosystem, which is dependent on a delicate balance between salt and fresh water. “A saltier sea will benefit certain animal and plant species while being problematic for others, which could upset the entire ecosystem,” says Daniel Hansson, who emphasises that there is still a considerable degree of uncertainty: “We’ve studied changes over the past 500 years, which is not the same thing as predicting what will happen over the next 500 years. But there is reason to believe that warm periods in the future will behave similarly to the way they have done in the past,” says Daniel Hansson.
The study Reconstruction of river runoff to the Baltic Sea, AD 1500-1995 has been published in the International Journal of Climatology.

Link to article:

Daniel Hansson, Department of Earth Sciences, University of Gothenburg
+46 (0)31 7862878
+46 (0)706 840481

Helena Aaberg | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>