Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer climate makes Baltic more salty

31.05.2010
Science has long believed that a warmer climate will increase river runoff to the Baltic Sea, thus making the inland sea less salty. However, a new extensive study from the University of Gothenburg reveals that the effect will probably be the opposite: climate change will reduce river runoff and increase salinity in the Baltic Sea.

“There could be major consequences for the Baltic’s sensitive ecosystem,” says researcher Daniel Hansson.

The Baltic is a young, brackish sea with a unique and sensitive ecosystem containing both marine and freshwater species. Researchers have been warning for many years that tiny changes in the salt content could have a major impact on the ecosystem. The basis for the argument has been that a warmer climate will increase river runoff and make the Baltic Sea less salty.

University of Gothenburg researchers, who have analysed 500 years’ worth of climate data, now say that the effect could instead be the opposite.

Observations since the 16th century
Researchers at the Department of Geosciences have been able to reconstruct the flow of freshwater to the Baltic Sea since the 16th century by analysing atmospheric observations from the past 500 years. The study, which has been published in the International Journal of Climatology, shows that in the past, warm periods have coincided with less freshwater in the Baltic Sea. If the climate becomes warmer in future, river runoff may also fall, leading to an increase in salinity.
Major regional differences
However, there may be major regional differences: “More freshwater runs off in the northern Baltic and Gulf of Finland when it’s warmer, while the opposite occurs in the southern Baltic. The reason for this is that a warmer climate leads to increased rainfall in the north and east and less rainfall in the south. Our study shows that the decrease in the south is greater than the increase in the north, which means that overall the water will be saltier,” says Daniel Hansson, researcher at the Department of Geosciences.
Ecosystem may be disturbed
The increase in salinity in the Baltic Sea may have a major impact on the sensitive ecosystem, which is dependent on a delicate balance between salt and fresh water. “A saltier sea will benefit certain animal and plant species while being problematic for others, which could upset the entire ecosystem,” says Daniel Hansson, who emphasises that there is still a considerable degree of uncertainty: “We’ve studied changes over the past 500 years, which is not the same thing as predicting what will happen over the next 500 years. But there is reason to believe that warm periods in the future will behave similarly to the way they have done in the past,” says Daniel Hansson.
The study Reconstruction of river runoff to the Baltic Sea, AD 1500-1995 has been published in the International Journal of Climatology.

Link to article: http://dx.doi.org/10.1002/joc.2097

Contact:
Daniel Hansson, Department of Earth Sciences, University of Gothenburg
+46 (0)31 7862878
+46 (0)706 840481
daniel.hansson@gvc.gu.se

Helena Aaberg | idw
Further information:
http://dx.doi.org/10.1002/joc.2097
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>