Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Brook Trout Streams Mostly Recovering From Acid Deposition

09.11.2011
Virginia's brook trout streams are showing encouraging signs of recovery – in most cases – from the debilitating effects of acid rain, according to the most recent results from a long-term study led by University of Virginia environmental scientists.

"This is good news and real evidence for the value of our national investment in improving air quality," said Rick Webb, a U.Va. environmental scientist in the College of Arts & Sciences and coordinator of the Virginia Trout Stream Sensitivity Study. "At the same time, there is more to be done, and many Virginia brook trout streams may never fully recover."

U.Va., with the support of the conservation organization Trout Unlimited and several state and federal agencies, has been studying the health of Virginia's remote mountain streams since initiating a large-scale survey in 1987. Another such survey was conducted in 2000, and again in the spring of 2010. Quarterly sampling of stream water chemistry also is conducted in 66 streams and regularly in Shenandoah National Park.

The study demonstrates a clear improvement in water quality between the 2000 and 2010 surveys. Little improvement was noted between the 1987 and 2000 surveys. Webb attributes this to a delayed effect of streams' ability to purge acidification that has settled for years into surrounding soils and that continues to leach into streams.

Janet Miller, a graduate student in environmental sciences who analyzed survey data, found that 77 percent of the sampled streams in 2010 were suitable for brook trout reproduction. The 1987 and 2000 surveys showed that only 55 percent and 56 percent, respectively, were suitable for brook trout reproduction.

Webb attributes the improvement to the Clean Air Act Amendments of 1990 that imposed strict regulations on emissions from coal-fired power plants, as well as improvements to technologies that reduce emissions from power plants, automobiles and other machinery.

Between 1990 and 2009, sulfur dioxide emissions from coal-fired power plants declined by 64 percent. Dominion Virginia Power, as a notable example, removes 95 percent of the sulfur dioxide emissions from its largest coal-fired power plant, located at Mount Storm, W.Va., which is upwind of Virginia's mountains and Shenandoah National Park.

Organizers plan to continue long-term monitoring by conducting surveys every 10 years, and have launched a $500,000 fundraising campaign to support the ongoing studies. They emphasize the importance of maintaining such long-term research on trout streams in Virginia – not only for monitoring their recovery from acid rain, but also for understanding the potential effects climate change and other man-made disturbances.

The Virginia Trout Stream Sensitivity Study is one of the nation's largest and most comprehensive long-term stream chemistry surveys. It is designed to track the effects of acidic deposition (often called acid rain) and other factors affecting water quality and related ecological conditions in Virginia's native trout streams.

The brook trout is the only native trout in Virginia and the eastern United States. The fish require clean water to propagate and are highly susceptible to acidity deposited to the water from pollution in the air. Brook trout, and the generally pristine and remote streams they inhabit, are considered indicators of the overall health of the environment.

In the study, water samples are analyzed for sulfate levels and a stream's natural ability to neutralize acidity. The researchers are finding that sulfate levels are dropping in most streams, indicating that air pollution reductions are having a positive effect on the environment. Due to prevailing winds that carry pollution from coal-burning power plants – primarily sulfur dioxide and nitrogen oxides – many mountain streams and forests in Virginia and throughout the Southeast have suffered long-term damage.

A given stream's level of susceptibility to acidification is affected by its bedrock composition and the chemistry of nearby soils. Streams with sandstone or quartzite bedrock – about one-third to one-half of the native trout watersheds in Virginia – are most vulnerable to acid deposition because they do not neutralize acid even years after pollution has been reduced.

During the 2010 survey, 165 volunteers, mostly from Trout Unlimited and some government agencies, sampled 384 streams, which, together with the program's 66 routinely sampled streams, represent about 80 percent of the forested mountain headwater streams in the state that contain reproducing brook trout.

"Through the years this has continued to be a team effort between U.Va. scientists, Trout Unlimited and the U.S. Park and Forest services, the EPA and the Virginia Department of Game and Inland Fisheries," said Jack Cosby, an environmental scientist who co-directs the stream study effort. "We've even received a lab equipment grant from the Dominion Foundation. The cooperation between entities that might sometimes seem to be at odds has been inspiring."

Data from the survey helps scientists determine the health of headwater streams throughout western Virginia. The U.S. Environmental Protection Agency and other federal and state agencies use such data to inform resource management and to develop, evaluate and recommend national air pollution control policies.

"It's a cause for hope that so many people share a determination to protect and preserve out brook trout streams and the natural world they represent," Webb noted. "The remarkable volunteer contribution to the trout stream surveys over more than two decades is a real testament to this determination."

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>