Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Brook Trout Streams Mostly Recovering From Acid Deposition

09.11.2011
Virginia's brook trout streams are showing encouraging signs of recovery – in most cases – from the debilitating effects of acid rain, according to the most recent results from a long-term study led by University of Virginia environmental scientists.

"This is good news and real evidence for the value of our national investment in improving air quality," said Rick Webb, a U.Va. environmental scientist in the College of Arts & Sciences and coordinator of the Virginia Trout Stream Sensitivity Study. "At the same time, there is more to be done, and many Virginia brook trout streams may never fully recover."

U.Va., with the support of the conservation organization Trout Unlimited and several state and federal agencies, has been studying the health of Virginia's remote mountain streams since initiating a large-scale survey in 1987. Another such survey was conducted in 2000, and again in the spring of 2010. Quarterly sampling of stream water chemistry also is conducted in 66 streams and regularly in Shenandoah National Park.

The study demonstrates a clear improvement in water quality between the 2000 and 2010 surveys. Little improvement was noted between the 1987 and 2000 surveys. Webb attributes this to a delayed effect of streams' ability to purge acidification that has settled for years into surrounding soils and that continues to leach into streams.

Janet Miller, a graduate student in environmental sciences who analyzed survey data, found that 77 percent of the sampled streams in 2010 were suitable for brook trout reproduction. The 1987 and 2000 surveys showed that only 55 percent and 56 percent, respectively, were suitable for brook trout reproduction.

Webb attributes the improvement to the Clean Air Act Amendments of 1990 that imposed strict regulations on emissions from coal-fired power plants, as well as improvements to technologies that reduce emissions from power plants, automobiles and other machinery.

Between 1990 and 2009, sulfur dioxide emissions from coal-fired power plants declined by 64 percent. Dominion Virginia Power, as a notable example, removes 95 percent of the sulfur dioxide emissions from its largest coal-fired power plant, located at Mount Storm, W.Va., which is upwind of Virginia's mountains and Shenandoah National Park.

Organizers plan to continue long-term monitoring by conducting surveys every 10 years, and have launched a $500,000 fundraising campaign to support the ongoing studies. They emphasize the importance of maintaining such long-term research on trout streams in Virginia – not only for monitoring their recovery from acid rain, but also for understanding the potential effects climate change and other man-made disturbances.

The Virginia Trout Stream Sensitivity Study is one of the nation's largest and most comprehensive long-term stream chemistry surveys. It is designed to track the effects of acidic deposition (often called acid rain) and other factors affecting water quality and related ecological conditions in Virginia's native trout streams.

The brook trout is the only native trout in Virginia and the eastern United States. The fish require clean water to propagate and are highly susceptible to acidity deposited to the water from pollution in the air. Brook trout, and the generally pristine and remote streams they inhabit, are considered indicators of the overall health of the environment.

In the study, water samples are analyzed for sulfate levels and a stream's natural ability to neutralize acidity. The researchers are finding that sulfate levels are dropping in most streams, indicating that air pollution reductions are having a positive effect on the environment. Due to prevailing winds that carry pollution from coal-burning power plants – primarily sulfur dioxide and nitrogen oxides – many mountain streams and forests in Virginia and throughout the Southeast have suffered long-term damage.

A given stream's level of susceptibility to acidification is affected by its bedrock composition and the chemistry of nearby soils. Streams with sandstone or quartzite bedrock – about one-third to one-half of the native trout watersheds in Virginia – are most vulnerable to acid deposition because they do not neutralize acid even years after pollution has been reduced.

During the 2010 survey, 165 volunteers, mostly from Trout Unlimited and some government agencies, sampled 384 streams, which, together with the program's 66 routinely sampled streams, represent about 80 percent of the forested mountain headwater streams in the state that contain reproducing brook trout.

"Through the years this has continued to be a team effort between U.Va. scientists, Trout Unlimited and the U.S. Park and Forest services, the EPA and the Virginia Department of Game and Inland Fisheries," said Jack Cosby, an environmental scientist who co-directs the stream study effort. "We've even received a lab equipment grant from the Dominion Foundation. The cooperation between entities that might sometimes seem to be at odds has been inspiring."

Data from the survey helps scientists determine the health of headwater streams throughout western Virginia. The U.S. Environmental Protection Agency and other federal and state agencies use such data to inform resource management and to develop, evaluate and recommend national air pollution control policies.

"It's a cause for hope that so many people share a determination to protect and preserve out brook trout streams and the natural world they represent," Webb noted. "The remarkable volunteer contribution to the trout stream surveys over more than two decades is a real testament to this determination."

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>