Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Hawaii completes 3-year investigation of military munitions sea disposal site

28.07.2010
The University of Hawaii at Manoa's School of Ocean Earth Science and Technology (SOEST) completed a three-year long investigation of Sea Disposal Site Hawaii Number 5 (HI-05), a deep-water military munitions disposal site in U.S. coastal waters approximately 5 miles south of Pearl Harbor, Oahu, Hawaii.

This complex investigation required the use of high-resolution sidescan sonar and remotely operated underwater vehicles to locate sea disposed munitions in water as deep as 1,500 feet. The SOEST's Hawaii Undersea Research Laboratory's (HURL) two three-man PISCES research submersibles were deployed to validate the results of sonar data and take water and sediment samples in areas where military munitions were found.

"We know from archived records thousands of military munitions were sea disposed at HI-05. There were also some indications that as many as 16,000 M47 100-pound bombs containing approximately 73 pounds each of the chemical agent mustard were disposed in the area," said Dr. Margo Edwards. "The systematic approach that we developed in collaboration with personnel from the U.S. Army and private industry (Environet, Inc.) allowed us to identify more than 2,000 munitions on the seafloor in the study area. With assistance from the HURL, samples collected within a few feet of several munitions provided the study team the ability to assess the potential impact of sea disposed munitions on human health and the ocean environment, as well as to assess the impact of the ocean environment on sea disposed munitions."

Sediment, water and biological samples were analyzed at the University of Hawaii and independent laboratories on the mainland for munitions constituents, including explosive compounds like TNT, chemical agents and their breakdown products, and metals.

The HI-05 project report has six major conclusions, which may be summarized as:

Most munitions in the HI-05 Study Area were disposed of by ships that were underway as munitions were cast overboard.

The integrity of munitions in the area spans a broad spectrum, with even the best-preserved munitions casings deteriorating at a yet-to-be determined rate. Skirts and pedestals observed at the base of munitions may be the result of rusting, possibly in combination with leakage of munitions constituents.

The analytical methods used to detect munitions constituents during the program were effective. With the exception of one unconfirmed detection of mustard, neither chemical agents nor explosives were detected in any samples.

Analysis of sediment samples collected around several munitions showed relatively little influence from human activities or man-made objects. This is significant given that the samples were taken within six feet of the munitions.

The observations and data collected do not indicate any adverse impacts on ecological health in the HI-05 Study Area.

The risk to human health from the consumption of fish and shrimp collected near the HI-05 Study Area were within Environmental Protection Agency acceptable risk levels.

Mr. Tad Davis, Deputy Assistant Secretary of the Army for Environment, Safety and Occupational Health stated, "University of Hawaii at Manoa's School of Ocean Earth Science and Technology (SOEST) and the quality team it assembled exceeded our expectations performing an extremely complex study with scientific rigor. By providing the Army with demonstrated, proven procedures for characterizing and assessing a munitions disposal site, SOEST has made a significant contribution to the Department of Defense's understanding of the potential effects of historic sea disposal sites on the ocean environment and those that use it."

The University of Hawaii undertook this project in partnership with Department of Defense's National Defense Center for Energy and the Environment. The National Oceanic and Atmospheric Administration and Environet, a local environmental engineering firm, consulted with the University of Hawaii on the project. The U.S. Army's Edgewood Chemical Biological Center provided chemical safety and analytical support for the project. The final report is available on the project website (www.hummaproject.com).

Contacts: University of Hawaii at Manoa: Margo Edwards (808) 956-5232

Office of the Assistant Secretary of Army for Environment, Safety and Occupational Health: Anne Johnson (703) 614-8464 or Dave Foster (703) 697-5344

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>