Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCBS's NCEAS find tropical forest blossoms are sensitive to changing climate

09.07.2013
The North Pole isn't the only place on Earth affected by slight increases in temperature.

Until recently, scientific thinking used to posit that tropical forests, which already exist in warm climates, may not be impacted much by climate change. But a new study conducted by UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) shows that to be erroneous.


The forest canopy from Barro Colorado Island, Panama shows Tabebuia guayacan in bloom.
Credit: S. Joseph Wright

In fact, the results indicate that tropical forests are producing more flowers in response to only slight increases in temperature. The findings were published online yesterday in the journal Nature Climate Change.

"Tropical forests are commonly thought of as the lungs of the Earth and how many flowers they produce is one vital sign of their health," said Stephanie Pau, who conducted the research as part of a Forecasting Phenology working group while she was a postdoctoral associate at NCEAS. "However, there is a point at which forests can get too warm and flower production will decrease. We're not seeing that yet at the sites we looked at, and whether that happens depends on how much the tropics will continue to warm."

The study, which used a new globally gridded satellite dataset, examined how changes in temperature, clouds, and rainfall affect the number of flowers tropical forests produce. Analysis of the data indicated that clouds mainly have an effect on short-term seasonal growth, but longer-term changes in these forests appear to be due to temperature. While other studies have used long-term flower production data, this is the first study to combine these data with direct estimates of cloud cover based on satellite information.

"This study is an inspired example of integrating diverse existing data to do something never imagined when the data were originally collected," explained Stephanie Hampton, deputy director of NCEAS. "Flowers were probably not what NASA scientists were thinking of when they archived these cloud data. Having access to environmental 'big data' and the skills to do data-intensive research drives innovation for creative teams like this."

Pau led a team of international researchers who studied seasonal and year-to-year flower production in two contrasting tropical forests: a seasonally dry forest on Barro Colorado Island, Panama, and a rainforest in Luquillo, Puerto Rico. According to Pau, the seasonally dry site has been producing more flowers at an average rate of 3 percent each year over the last several decades, an increase that appears to be tied to warming temperatures. Pau collaborated with NCEAS scientific programmer/analyst James Regnetz to scrutinize the data.

Flower productivity is a measure of the reproductive health and overall growth of the forests. The amount of sunlight reaching tropical forests due to varying amounts of cloud cover is an important factor, just not the most important when it comes to flower production. According to Pau, both sites still appear to respond positively to increases in light availability, yet temperature was the most consistent factor across multiple time scales.

"With most projections of future climate change, people have emphasized the impact on high-latitude ecosystems because that is where temperatures will increase the most," Pau said. "The tropics, which are already warm, probably won't experience as much of a temperature increase as high-latitude regions. Even so, we're showing that these tropical forests are still really sensitive to small degrees of change."

"The increasing availability of large data sets from long-term field studies and satellite data provide new opportunities to study how forests are responding to a warmer world," said Frank Davis, director of NCEAS. "Their discovery shows just how sensitive these systems can be to even small temperature changes."

Pau's co-authors include Benjamin I. Cook of the NASA Goddard Institute for Space Studies and the Lamont-Doherty Earth Observatory, Christopher J. Nytch and Jess K. Zimmerman of the University of Puerto Rico's Institute for Tropical Ecosystem Studies, Elizabeth M. Wolkovich of the University of British Columbia's Biodiversity Research Centre, and S. Joseph Wright of the Smithsonian Tropical Research Institute.

Julie Cohen | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>