Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turf Wars: Sand and Corals Don't Mix

When reef fish get a mouthful of sand, coral reefs can drown.

That’s the latest startling evidence to emerge from research into the likely fate of reefs under climate change and rising sea levels, at the ARC Centre of Excellence for Coral Reef Studies (CoECRS).

“We’ve known for a while that having a lot of sediment in the water is bad for corals and can smother them. What we didn’t realize is how permanent this state of affairs can become, to the point where it may prevent the corals ever re-establishing,” says Professor David Bellwood of CoECRS and James Cook University.

The killer blow for a degraded coral reef is a thick mat of sand and weeds that shrouds the rocky surfaces on which the corals would normally grow, preventing them from re-establishing. This gritty algal ‘turf’ has shown itself to be remarkably hardy and, once in place, makes it almost impossible for the corals to return.

If sea levels rise, then the smothered reef ‘drowns’ and never recovers, Prof, Bellwood says. “We know this from geological history, at the time of previous sea level rises. The reason we are doing the work is to see whether or not coral reefs will be able to keep up with rising sea levels under climate change.”

But Prof. Bellwood and colleague Dr Chris Fulton from the Australian National University have also uncovered a remarkable link in the chain which explains why the algal turf can win in its ‘turf war’ with the corals.

When the water is thick with sediment and it settles on the seaweeds, herbivorous reef fish turn up their noses at the gritty food, much as humans disdain a sandwich that has been dropped on a sandy beach.

“Remarkably we found that when there is little sediment around and plenty of fish, the fish ‘mowed’ the weeds very fast, eating two thirds of their length in about 4 hours. This action by fish in keeping the algal turf down gives the corals a chance to re-establish” said Dr Fulton.

“But if there is a lot of sediment in the water, the fish go off their feed, the weeds grow, more sand settles – and the murky shroud that smothers the reef becomes more stable, often permanent. Then, when sea levels rise, the reef drowns.”

Prof. Bellwood says that in many cases the sediment is generated naturally by the reef itself, particles are swept into its back lagoon and then stirred up by wind, tide and wave to settle on the turf-covered flats. “In those cases it is almost like the reef defecating onto itself,” he adds.

In other cases the sediment is released from the land, often as a result of human activity such as farming, grazing, land clearing or construction.

In either case, if there is enough sediment in the water to settle on the seaweed, it turns the weed-eating fish off their meal. “We’re not entirely sure why this is - it may be that the sediment acts as an antacid and gives the fish indigestion by preventing their stomach acids digesting their food. Or it may simply be that fish, like people, don’t appreciate a mouthful of sand and mud.”

There is not a lot that humans can do to disrupt the natural processes that cause reefs to smother under stable algal turfs, then drown as sea levels rise, Prof. Bellwood says.

However, he adds, there is plenty we can do to reduce our own impact on the process by checking the flow of erosion off the land onto coral reefs, and by ensuring that populations of weed-eating fish are maintained at levels high enough to control the weeds - and give the corals an even chance of making a comeback.

More information:
Professor David Bellwood, CoECRS and JCU, 07 4781 4447 or 0419 422 815
Dr Chris Fulton, ANU, 02 6125 9892 or 0419 797 500
Jenny Lappin, CoECRS, + 61-(0)7 4781 4222
Jim O’Brien, James Cook University Media Office, 61-(0)7 4781 4822
Martyn Pearce, ANU Communications Office, 02 6125 5575 or 0416 249 245
Associated publication: Bellwood, D.R. and C.J. Fulton (2008) Sediment-mediated suppression of herbivory on coral reefs: Decreasing resilience to rising sea-levels and climate change? Limnology and Oceanography 53: 2695-2701.

David Bellwood | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

Scientists discover particles similar to Majorana fermions

25.10.2016 | Physics and Astronomy

Phenotype at the push of a button

25.10.2016 | Life Sciences

More VideoLinks >>>