Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny plankton could have big impact on climate

As the climate changes and oceans’ acidity increases, tiny plankton seem set to succeed. An international team of marine scientists has found that the smallest plankton groups thrive under elevated carbon dioxide (CO2) levels.

This could cause an imbalance in the food web as well as decrease ocean CO2 uptake, an important regulator of global climate. The results of the study, conducted off the coast of Svalbard, Norway, in 2010, are now compiled in a special issue published in Biogeosciences, a journal of the European Geosciences Union.

Scientists checking the mesocosms off the coast of Svalbard (Credit: Ulf Riebesell/GEOMAR)

“If the tiny plankton blooms, it consumes the nutrients that are normally also available to larger plankton species,” explains Ulf Riebesell, a professor of biological oceanography at the GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany and head of the experimental team. This could mean the larger plankton run short of food.

Large plankton play an important role in carbon export to the deep ocean, but in a system dominated by the so-called pico- and nanoplankton, less carbon is transported out of surface waters. “This may cause the oceans to absorb less CO2 in the future,” says Riebesell.

The potential imbalance in the plankton food web may have an even bigger climate impact. Large plankton are also important producers of a climate-cooling gas called dimethyl sulphide, which stimulates cloud-formation over the oceans. Less dimethyl sulphide means more sunlight reaches the Earth’s surface, adding to the greenhouse effect. “These important services of the ocean may thus be significantly affected by acidification.”

Ecosystems in the Arctic are some of the most vulnerable to acidification because the cold temperatures here mean that the ocean absorbs more carbon dioxide. “Acidification is faster there than in temperate or tropical regions,” explains the coordinator of the European Project on Ocean Acidification (EPOCA), Jean-Pierre Gattuso of the Laboratory of Oceanography of Villefranche-sur-Mer of the French National Centre for Scientific Research (CNRS).

The increasing acidity is known to affect some calcifying organisms in the Arctic, including certain sea snails, mussels and other molluscs. But scientists did not know until now how ocean acidification alters both the base of the marine food web and carbon transport in the ocean.

The five-week long field study conducted in the Kongsfjord off the Arctic archipelago of Svalbard, under the EPOCA framework, intended to close this knowledge gap. For the experiment, the scientists deployed nine large ‘mesocosms’, eight-metre long floatation frames carrying plastic bags with a capacity of 50 cubic metres. These water enclosures, developed at GEOMAR, allow researchers to study plankton communities in their natural environment under controlled conditions, rather than in a beaker in the lab. Few studies have looked at whole communities before.

The scientists gradually added CO2 to the mesocom water so that it reached acidity levels expected in 20, 40, 60, 80 and 100 years, with two bags left as controls. They also added nutrients to simulate a natural plankton bloom, as reported in the Biogeosciences special issue.

The team found that, where CO2 was elevated, pico- and, to a lesser extent, nanoplankton grew, drawing down nutrients so there were less available to larger plankton. “The different responses we observed made it clear that the communities’ sensitivity to acidification depends strongly on whether or not nutrients are available,” Riebesell summarises.

“Time and [time] again the tiniest plankton benefits from the surplus CO2, they produce more biomass and more organic carbon, and dimethyl sulphide production and carbon export are decreasing,” he concludes.

More information

With 35 participants from 13 European institutions, the GEOMAR-coordinated mesocosm experiment was the largest project of EPOCA, a large EU-funded research initiative on ocean acidification that ran from 2008 to 2012. It was supported by the French-German Arctic Research Base.

The research results obtained in the mesocosm study are presented in the special issue ‘Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study’ of the EGU open access journal Biogeosciences. The papers on the special issue were published between March and August 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the special issue or to the journal website.

The scientific articles that make up the special issue are available online, free of charge, at

The issue was edited by U. Riebesell (GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany), J.-P. Gattuso (CNRS Laboratory of Oceanography of Villefranche sur Mer and Université Pierre et Marie Curie-Paris 6, France), T. F. Thingstad (Department of Biology, University of Bergen, Norway) and J. J. Middelburg (Faculty of Geosciences, Utrecht University, the Netherlands).

For additional high-resolution images and video footage of the experiment, please email Maike Nicolai (GEOMAR Communication & Media) at

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

Ulf Riebesell
Professor of Biological Oceanography
GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
Tel: +49-431-600-4444
Jean-Pierre Gattuso
CNRS and Université Pierre et Marie Curie
Laboratory of Oceanography
Villefranche-sur-Mer, France
Tel: +33-493-763859
Mobile: +33-6-9592-6880
Maike Nicolai
GEOMAR Communication & Media
Kiel, Germany
Tel: +49-431-600-2807
Bárbara Ferreira & Sara Mynott
EGU Media and Communications
Munich, Germany
Tel: +49-89-2180-6703

Bárbara Ferreira | European Geosciences Union (EGU)
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>