Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny plankton could have big impact on climate

13.09.2013
As the climate changes and oceans’ acidity increases, tiny plankton seem set to succeed. An international team of marine scientists has found that the smallest plankton groups thrive under elevated carbon dioxide (CO2) levels.

This could cause an imbalance in the food web as well as decrease ocean CO2 uptake, an important regulator of global climate. The results of the study, conducted off the coast of Svalbard, Norway, in 2010, are now compiled in a special issue published in Biogeosciences, a journal of the European Geosciences Union.


Scientists checking the mesocosms off the coast of Svalbard (Credit: Ulf Riebesell/GEOMAR)

“If the tiny plankton blooms, it consumes the nutrients that are normally also available to larger plankton species,” explains Ulf Riebesell, a professor of biological oceanography at the GEOMAR Helmholtz Centre for Ocean Research Kiel in Germany and head of the experimental team. This could mean the larger plankton run short of food.

Large plankton play an important role in carbon export to the deep ocean, but in a system dominated by the so-called pico- and nanoplankton, less carbon is transported out of surface waters. “This may cause the oceans to absorb less CO2 in the future,” says Riebesell.

The potential imbalance in the plankton food web may have an even bigger climate impact. Large plankton are also important producers of a climate-cooling gas called dimethyl sulphide, which stimulates cloud-formation over the oceans. Less dimethyl sulphide means more sunlight reaches the Earth’s surface, adding to the greenhouse effect. “These important services of the ocean may thus be significantly affected by acidification.”

Ecosystems in the Arctic are some of the most vulnerable to acidification because the cold temperatures here mean that the ocean absorbs more carbon dioxide. “Acidification is faster there than in temperate or tropical regions,” explains the coordinator of the European Project on Ocean Acidification (EPOCA), Jean-Pierre Gattuso of the Laboratory of Oceanography of Villefranche-sur-Mer of the French National Centre for Scientific Research (CNRS).

The increasing acidity is known to affect some calcifying organisms in the Arctic, including certain sea snails, mussels and other molluscs. But scientists did not know until now how ocean acidification alters both the base of the marine food web and carbon transport in the ocean.

The five-week long field study conducted in the Kongsfjord off the Arctic archipelago of Svalbard, under the EPOCA framework, intended to close this knowledge gap. For the experiment, the scientists deployed nine large ‘mesocosms’, eight-metre long floatation frames carrying plastic bags with a capacity of 50 cubic metres. These water enclosures, developed at GEOMAR, allow researchers to study plankton communities in their natural environment under controlled conditions, rather than in a beaker in the lab. Few studies have looked at whole communities before.

The scientists gradually added CO2 to the mesocom water so that it reached acidity levels expected in 20, 40, 60, 80 and 100 years, with two bags left as controls. They also added nutrients to simulate a natural plankton bloom, as reported in the Biogeosciences special issue.

The team found that, where CO2 was elevated, pico- and, to a lesser extent, nanoplankton grew, drawing down nutrients so there were less available to larger plankton. “The different responses we observed made it clear that the communities’ sensitivity to acidification depends strongly on whether or not nutrients are available,” Riebesell summarises.

“Time and [time] again the tiniest plankton benefits from the surplus CO2, they produce more biomass and more organic carbon, and dimethyl sulphide production and carbon export are decreasing,” he concludes.

More information

With 35 participants from 13 European institutions, the GEOMAR-coordinated mesocosm experiment was the largest project of EPOCA, a large EU-funded research initiative on ocean acidification that ran from 2008 to 2012. It was supported by the French-German Arctic Research Base.

The research results obtained in the mesocosm study are presented in the special issue ‘Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study’ of the EGU open access journal Biogeosciences. The papers on the special issue were published between March and August 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the special issue or to the journal website.

The scientific articles that make up the special issue are available online, free of charge, at http://www.biogeosciences.net/special_issue120.html.

The issue was edited by U. Riebesell (GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany), J.-P. Gattuso (CNRS Laboratory of Oceanography of Villefranche sur Mer and Université Pierre et Marie Curie-Paris 6, France), T. F. Thingstad (Department of Biology, University of Bergen, Norway) and J. J. Middelburg (Faculty of Geosciences, Utrecht University, the Netherlands).

For additional high-resolution images and video footage of the experiment, please email Maike Nicolai (GEOMAR Communication & Media) at mnicolai@geomar.de.

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

Links
Biogeosciences: http://www.biogeosciences.net
EPOCA: http://www.epoca-project.eu
GEOMAR: http://www.geomar.de
Contact
Ulf Riebesell
Professor of Biological Oceanography
GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
Tel: +49-431-600-4444
Email: uriebesell@geomar.de
Jean-Pierre Gattuso
CNRS and Université Pierre et Marie Curie
Laboratory of Oceanography
Villefranche-sur-Mer, France
Tel: +33-493-763859
Mobile: +33-6-9592-6880
Email: gattuso@obs-vlfr.fr
Maike Nicolai
GEOMAR Communication & Media
Kiel, Germany
Tel: +49-431-600-2807
Email: mnicolai@geomar.de
Bárbara Ferreira & Sara Mynott
EGU Media and Communications
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu

Bárbara Ferreira | European Geosciences Union (EGU)
Further information:
http://www.egu.eu/news/76/tiny-plankton-could-have-big-impact-on-climate/
http://www.geomar.de

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>