Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Time, place and how wood is used are factors in carbon emissions from deforestation

A new study from the University of California, Davis, provides a deeper understanding of the complex global impacts of deforestation on greenhouse gas emissions.

The study, published May 13 in the advance online edition of the journal Nature Climate Change, reports that the volume of greenhouse gas released when a forest is cleared depends on how the trees will be used and in which part of the world the trees are grown.

When trees are felled to create solid wood products, such as lumber for housing, that wood retains much of its carbon for decades, the researchers found. In contrast, when wood is used for bioenergy or turned into pulp for paper, nearly all of its carbon is released into the atmosphere. Carbon is a major contributor to greenhouse gases.

"We found that 30 years after a forest clearing, between 0 percent and 62 percent of carbon from that forest might remain in storage," said lead author J. Mason Earles, a doctoral student with the UC Davis Institute of Transportation Studies. "Previous models generally assumed that it was all released immediately."

The researchers analyzed how 169 countries use harvested forests. They learned that the temperate forests found in the United States, Canada and parts of Europe are cleared primarily for use in solid wood products, while the tropical forests of the Southern hemisphere are more often cleared for use in energy and paper production.

"Carbon stored in forests outside Europe, the USA and Canada, for example, in tropical climates such as Brazil and Indonesia, will be almost entirely lost shortly after clearance," the study states.

The study's findings have potential implications for biofuel incentives based on greenhouse gas emissions. For instance, if the United States decides to incentivize corn-based ethanol, less profitable crops, such as soybeans, may shift to other countries. And those countries might clear more forests to make way for the new crops. Where those countries are located and how the wood from those forests is used would affect how much carbon would be released into the atmosphere.

Earles said the study provides new information that could help inform climate models of the Intergovernmental Panel on Climate Change, the leading international body for the assessment of climate change.

"This is just one of the pieces that fit into this land-use issue," said Earles. Land use is a driving factor of climate change. "We hope it will give climate models some concrete data on emissions factors they can use."

In addition to Earles, the study, "Timing of carbon emissions from global forest clearance," was co-authored by Sonia Yeh, a research scientist with the UC Davis Institute of Transportation Studies, and Kenneth E. Skog of the USDA Forest Service.

The study was funded by the California Air Resources Board and the David and Lucile Packard Foundation.

Media contacts:
J. Mason Earles, Institute of Trasportation Studies,
(314) 479-6570,
Kat Kerlin, UC Davis News Service,
(530) 752-7704,, Cell: (530) 750-9195

Kat Kerlin | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>